Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators

In this brief, we study the design of a feedback and feedforward controller to compensate for creep, hysteresis, and vibration effects in an experimental piezoactuator system. First, we linearize the nonlinear dynamics of the piezoactuator by accounting for the hysteresis (as well as creep) using high-gain feedback control. Next, we model the linear vibrational dynamics and then invert the model to find a feedforward input to account vibration - this process is significantly easier than considering the complete nonlinear dynamics (which combines hysteresis and vibration effects). Afterwards, the feedforward input is augmented to the feedback-linearized system to achieve high-precision highspeed positioning. We apply the method to a piezoscanner used in an experimental atomic force microscope to demonstrate the method's effectiveness and we show significant reduction of both the maximum and root-mean-square tracking error. For example, high-gain feedback control compensates for hysteresis and creep effects, and in our case, it reduces the maximum error (compared to the uncompensated case) by over 90%. Then, at relatively high scan rates, the performance of the feedback controlled system can be improved by over 75% (i.e., reduction of maximum error) when the inversion-based feedforward input is integrated with the high-gain feedback controlled system.

[1]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[2]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[3]  R. Barrett,et al.  Optical scan‐correction system applied to atomic force microscopy , 1991 .

[4]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[5]  Yuichi Okazaki A Micro Positioning Tool Post using a Piezoelectric Actuator for Diamond Turning Machines , 1988 .

[6]  A. E. Holman,et al.  Analysis of piezo actuators in translation constructions , 1995 .

[7]  Qingze Zou,et al.  Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation , 2005, IEEE Transactions on Control Systems Technology.

[8]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[9]  A. Forchel,et al.  Fine structure of excitons in InAs/GaAs coupled auantum dots: a sensitive test of electronic coupling. , 2003, Physical review letters.

[10]  Ajay P. Malshe,et al.  Nanoscale dislocation patterning by ultralow load indentation , 2005 .

[11]  Qingze Zou,et al.  Preview-based stable-inversion for output tracking , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[12]  Hewon Jung,et al.  Creep characteristics of piezoelectric actuators , 2000 .

[13]  Tadahiro Hasegawa,et al.  Modeling of shape memory alloy actuator and tracking control system with the model , 2001, IEEE Trans. Control. Syst. Technol..

[14]  Qingze Zou,et al.  Preview-Based Stable-Inversion for Output Tracking of Linear Systems , 1999 .

[15]  Santosh Devasia,et al.  Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes , 2006 .

[16]  Meng-Shiun Tsai,et al.  Robust Tracking Control of a Piezoactuator Using a New Approximate Hysteresis Model , 2003 .

[17]  G. Tchoupo,et al.  Hysteresis Compensation for High-Precision Positioning of a Shape Memory Alloy Actuator using Integrated Iterative-Feedforward and Feedback Inputs , 2007, 2007 American Control Conference.

[18]  Ho‐Jun Lee,et al.  The Effect of Temperature Dependent Material Properties on the Response of Piezoelectric Composite Materials , 1998 .

[19]  K. R. Koops,et al.  Observation of zero creep in piezoelectric actuators , 1999 .

[20]  Santosh Devasia,et al.  Should model-based inverse inputs be used as feedforward under plant uncertainty? , 2002, IEEE Trans. Autom. Control..

[21]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[22]  Kam K. Leang,et al.  Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures , 1998 .

[23]  K. Mondal,et al.  Analog and digital filters: Design and realization , 1980, Proceedings of the IEEE.

[24]  Georg Schitter,et al.  Identification and open-loop tracking control of a piezoelectric tube scanner for high-speed scanning-probe microscopy , 2004, IEEE Transactions on Control Systems Technology.

[25]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[26]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[27]  C. Julian Chen In situ testing and calibration of tube piezoelectric scanners , 1992 .

[28]  Christopher S. Lynch,et al.  Piezoelectric Hydraulic Pump System Dynamic Model , 2001 .