Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides

Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.

[1]  R. Stolen,et al.  Stimulated Brillouin scattering in optical fibers , 1972 .

[2]  A. Bloom Quantum Electronics , 1972, Nature.

[3]  D. Cotter,et al.  Stimulated Brillouin Scattering in Monomode Optical Fiber , 1983 .

[4]  M. Damzen,et al.  High-efficiency laser-pulse compression by stimulated Brillouin scattering. , 1983, Optics letters.

[5]  Fibre Brillouin amplifier with electronically controlled bandwidth , 1986 .

[6]  N. A. Olsson,et al.  Characteristics of a semiconductor laser pumped brillouin amplifier with electronically controlled bandwidth , 1987 .

[7]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[8]  S. P. Smith,et al.  Narrow-linewidth stimulated Brillouin fiber laser and applications. , 1991, Optics letters.

[9]  M. Damzen,et al.  Ultrashort pulse generation by phase locking of multiple stimulated Brillouin scattering , 1991 .

[10]  M Martinelli,et al.  Measurement of the frequency response induced by electrostriction in optical fibers. , 1997, Optics letters.

[11]  T H Russell,et al.  Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber. , 1999, Optics letters.

[12]  Takuo Tanemura,et al.  Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber. , 2002, Optics letters.

[13]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[14]  A Mocofanescu,et al.  Stimulated brillouin scattering : fundamentals and applications , 2003 .

[15]  A Mocofanescu,et al.  Stimulated Brillouin Scattering , 2003 .

[16]  Mario J. Paniccia,et al.  Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide , 2004 .

[17]  Thomas Schneider,et al.  Generation of millimetre-wave signals by stimulated Brillouin scattering for radio over fibre systems , 2004 .

[18]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[19]  Luc Thévenaz,et al.  Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. , 2005, Optics express.

[20]  A. Schweinsberg,et al.  Tunable all-optical delays via Brillouin slow light in an optical fiber , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[21]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[22]  D. Dimitropoulos,et al.  Prospects for Silicon Mid-IR Raman Lasers , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[24]  V. Laude,et al.  Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres , 2006 .

[25]  Daniel J Gauthier,et al.  Maximizing the opening of eye diagrams for slow-light systems. , 2007, Applied optics.

[26]  Byung-Gyu Chae,et al.  Stored Light in an Optical Fiber via Stimulated Brillouin Scattering , 2007 .

[27]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[28]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[29]  T. Sakamoto,et al.  Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb. , 2008, Optics express.

[30]  T. Baehr‐Jones,et al.  Harnessing optical forces in integrated photonic circuits , 2008, Nature.

[31]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[32]  The Kerr Nonlinearity , 2008 .

[33]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[34]  Tal Carmon,et al.  Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. , 2009, Physical review letters.

[35]  Oskar Painter,et al.  Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[36]  Scott Diddams,et al.  Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser. , 2009, Physical review letters.

[37]  Thomas W. Kenny,et al.  Multimode thermoelastic dissipation , 2009 .

[38]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[39]  A. V. Nazarkin,et al.  Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators , 2009 .

[40]  R. Baets,et al.  Tunable optical forces between nanophotonic waveguides. , 2009, Nature nanotechnology.

[41]  H. Kimble,et al.  Cavity optomechanics with stoichiometric SiN films. , 2009, Physical review letters.

[42]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[43]  Tanya M Monro,et al.  A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. , 2009, Optics express.

[44]  W. Pernice,et al.  Broadband all-photonic transduction of nanocantilevers. , 2009, Nature nanotechnology.

[45]  K. Vahala,et al.  Mechanical oscillation and cooling actuated by the optical gradient force. , 2009, Physical review letters.

[46]  Lute Maleki,et al.  Brillouin lasing with a CaF2 whispering gallery mode resonator. , 2008, Physical review letters.

[47]  M. Lipson,et al.  Controlling photonic structures using optical forces , 2009, Nature.

[48]  Zheng Wang,et al.  Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. , 2010, Optics express.

[49]  Kerry J. Vahala,et al.  Phonon laser action in a tunable, two-level system , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[50]  Kerry J. Vahala,et al.  Coherent mixing of mechanical excitations in nano-optomechanical structures , 2009, 0908.1128.

[51]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[52]  D. Thourhout,et al.  Optomechanical device actuation through the optical gradient force , 2010 .

[53]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[54]  P. Rakich,et al.  Scaling of optical forces in dielectric waveguides: rigorous connection between radiation pressure and dispersion. , 2011, Optics letters.

[55]  Benjamin J. Eggleton,et al.  On-chip stimulated Brillouin scattering , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[56]  Daniel J Gauthier,et al.  FSBS resonances observed in a standard highly nonlinear fiber. , 2011, Optics express.

[57]  A. Willner,et al.  Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications , 2011 .

[58]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[59]  Oskar Painter,et al.  Proposal for an optomechanical traveling wave phonon–photon translator , 2010, 1009.3529.

[60]  A. Butsch,et al.  Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre , 2011 .

[61]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[62]  Peter T. Rakich,et al.  Giant enhancement of stimulated Brillouin scattering in the sub-wavelength limit , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[63]  Tristan Kremp,et al.  Single-frequency Brillouin distributed feedback fiber laser. , 2012, Optics letters.

[64]  G. Agrawal Highly Nonlinear Fibers , 2013 .

[65]  M. Soljačić,et al.  Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. , 2012, Optics express.