Hybrid-degree weighted T-splines and their application in isogeometric analysis

Abstract In this paper, we introduce hybrid-degree weighted T-splines by means of local p-refinement and apply them to isogeometric analysis. Standard T-splines enable local h-refinement, however, they do not support local p-refinement. To increase the flexibility of T-splines so that local p-refinement is also available, we first define weighted B-spline curves of hybrid degree. Then we extend the idea to weighted T-spline surfaces of hybrid degree. A transition region is defined so as to stitch the locally p-refined region with the rest of the mesh. The transition region has the same basis function degree as the p-refined region, and the same surface continuity as the rest of the mesh. Finally, we compare the performance of odd-, even-, and hybrid-degree T-splines over an L -shaped domain governed by the Laplace equation and create high-genus surfaces using hybrid-degree weighted T-splines.

[1]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[2]  Thomas J. R. Hughes,et al.  Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .

[3]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[4]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[5]  Stefano Giani,et al.  Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows. , 2001 .

[6]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[7]  Les A. Piegl,et al.  Software-engineering approach to degree elevation of B-spline curves , 1994, Comput. Aided Des..

[8]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[9]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[10]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[11]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[12]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[13]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[14]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[15]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[16]  Xin Li,et al.  SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES , 2015 .

[17]  Ignasi Colominas,et al.  Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis , 2013, International journal for numerical methods in biomedical engineering.

[18]  L. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communications.

[19]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[20]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[21]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[22]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[23]  Thomas W. Sederberg,et al.  Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..

[24]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[25]  Yongjie Zhang,et al.  A hybrid variational‐collocation immersed method for fluid‐structure interaction using unstructured T‐splines , 2016 .

[26]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[27]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[28]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[29]  Wanqiang Shen,et al.  A basis of multi-degree splines , 2010, Comput. Aided Geom. Des..

[30]  Tom Lyche,et al.  Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .

[31]  Yuri Bazilevs,et al.  Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion , 2015 .

[32]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[33]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[34]  Li,et al.  SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES , 2015 .

[35]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[36]  Xiaodong Wei,et al.  Handling Extraordinary Nodes with Weighted T-spline Basis Functions , 2015 .

[37]  Hartmut Prautzsch,et al.  Degree elevation of B-spline curves , 1984, Comput. Aided Geom. Des..

[38]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[39]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[40]  Giancarlo Sangalli,et al.  Characterization of analysis-suitable T-splines , 2015, Comput. Aided Geom. Des..

[41]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[42]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[43]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[44]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[45]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[46]  Xesús Nogueira,et al.  An unconditionally energy-stable method for the phase field crystal equation , 2012 .

[47]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[48]  Philipp Morgenstern 3D Analysis-suitable T-splines: definition, linear independence and m-graded local refinement , 2015 .

[49]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[50]  Daniel Peterseim,et al.  Analysis-suitable adaptive T-mesh refinement with linear complexity , 2014, Comput. Aided Geom. Des..

[51]  Ignasi Colominas,et al.  Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis , 2014 .

[52]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[53]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[54]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[55]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[56]  Tom Lyche,et al.  Algorithms for degree-raising of splines , 1985, TOGS.

[57]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[58]  Hartmut Prautzsch,et al.  A fast algorithm to raise the degree of spline curves , 1991, Comput. Aided Geom. Des..

[59]  L. Schumaker,et al.  Degree raising for splines , 1986 .

[60]  Xin Li,et al.  A Geometric Approach for Multi-Degree Spline , 2012, Journal of Computer Science and Technology.

[61]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[62]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.