Isogeometric collocation methods for the Reissner–Mindlin plate problem

Abstract Within the general framework of isogeometric methods, collocation schemes have been recently proposed as a viable and promising low-cost alternative to standard isogeometric Galerkin approaches. In this paper, isogeometric collocation methods for the numerical approximation of Reissner–Mindlin plate problems are proposed for the first time. Locking-free primal and mixed formulations are herein considered, and the potential of isogeometric collocation as a geometrically flexible and computationally efficient simulation tool for shear deformable plates is shown through the solution of several numerical tests.

[1]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[2]  Fehmi Cirak,et al.  Shear‐flexible subdivision shells , 2012 .

[3]  Long Chen FINITE ELEMENT METHOD , 2013 .

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  Thomas J. R. Hughes,et al.  Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis , 2014 .

[8]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[9]  Giancarlo Sangalli,et al.  Isogeometric Discrete Differential Forms in Three Dimensions , 2011, SIAM J. Numer. Anal..

[10]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[11]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[12]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[13]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[14]  Saeed Shojaee,et al.  Free vibration analysis of thin plates by using a NURBS-based isogeometric approach , 2012 .

[15]  D. Arnold,et al.  Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model , 1996 .

[16]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[17]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[18]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[19]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[20]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[21]  L. Beirao da Veiga,et al.  An isogeometric method for the Reissner-Mindlin plate bending problem , 2011, 1106.4436.

[22]  K. Bathe Finite Element Procedures , 1995 .

[23]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[24]  Jesús Ildefonso Díaz Díaz,et al.  ON THE COMPLEX GINZBURG–LANDAU EQUATION WITH A DELAYED FEEDBACK , 2006 .

[25]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[26]  D. J. Benson,et al.  Patient-specific isogeometric structural analysis of aortic valve closure , 2015 .

[27]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[28]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[29]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[30]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[31]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[32]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[33]  C. Chinosi,et al.  Numerical analysis of some mixed finite element methods for Reissner-Mindlin plates , 1995 .

[34]  John A. Evans,et al.  Isogeometric collocation: Neumann boundary conditions and contact , 2015 .

[35]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .