Small deformations of spherical biomembranes

In this contribution to the proceedings of the 11th Mathematical Society of Japan (MSJ) Seasonal Institute (July 2018) we give an overview of some recent work on a mathematical model for small deformations of a spherical membrane. The idea is to consider perturbations to minimisers of a surface geometric energy. The model is obtained from consideration of second order approximations to a perturbed energy. In particular, the considered problems involve particle constraints and surface phase field energies.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[3]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[4]  S. Leibler,et al.  Curvature instability in membranes , 1986 .

[5]  S. Leibler,et al.  Ordered and curved meso-structures in membranes and amphiphilic films , 1987 .

[6]  David Andelman,et al.  Equilibrium shape of two-component unilamellar membranes and vesicles , 1992 .

[7]  L. Simon Existence of surfaces minimizing the Willmore functional , 1993 .

[8]  R. Lipowsky,et al.  Domain-induced budding of vesicles. , 1993, Physical review letters.

[9]  David Andelman,et al.  Phase transitions and shapes of two component membranes and vesicles II : weak segregation limit , 1993 .

[10]  M. Seul,et al.  Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.

[11]  Taniguchi,et al.  Shape deformation and phase separation dynamics of two-component vesicles. , 1996, Physical review letters.

[12]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[14]  E. Kuwert,et al.  Existence of minimizing Willmore surfaces of prescribed genus , 2003 .

[15]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[16]  Harvey T. McMahon,et al.  Membrane curvature and mechanisms of dynamic cell membrane remodelling , 2005, Nature.

[17]  J. Zimmerberg,et al.  Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. , 2005, Biophysical journal.

[18]  W. Webb,et al.  Membrane elasticity in giant vesicles with fluid phase coexistence. , 2005, Biophysical journal.

[19]  J. Groves,et al.  Formation and spatio-temporal evolution of periodic structures in lipid bilayers. , 2005, Journal of the American Chemical Society.

[20]  L. Pike Rafts defined: a report on the Keystone symposium on lipid rafts and cell function Published, JLR Papers in Press, April 27, 2006. , 2006, Journal of Lipid Research.

[21]  Cheng-han Yu,et al.  Curvature-modulated phase separation in lipid bilayer membranes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[22]  Rohit Mittal,et al.  Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. , 2007, Structure.

[23]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[24]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[25]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[26]  Charles M. Elliott,et al.  A Surface Phase Field Model for Two-Phase Biological Membranes , 2010, SIAM J. Appl. Math..

[27]  R. Choksi,et al.  Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case , 2012, 1202.1979.

[28]  M. Morandotti,et al.  Global minimizers for axisymmetric multiphase membranes , 2012, 1204.6673.

[29]  Charles M. Elliott,et al.  Computation of Two-Phase Biomembranes with Phase Dependent Material Parameters Using Surface Finite Elements , 2013 .

[30]  Andreas Dedner,et al.  The DUNE-ALUGrid Module , 2014, ArXiv.

[31]  Michael Helmers,et al.  Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes , 2015, 1603.05231.

[32]  Charles M. Elliott,et al.  A Variational Approach to Particles in Lipid Membranes , 2015, 1512.02375.

[33]  Irene Fonseca,et al.  Domain Formation in Membranes Near the Onset of Instability , 2016, J. Nonlinear Sci..

[34]  K. Kawasaki,et al.  Phase transitions and shapes of two component membranes and vesicles I: strong segregation limit , 2016 .

[35]  G. Hobbs Particles and biomembranes : a variational PDE approach , 2016 .

[36]  C. M. Elliott,et al.  Small deformations of Helfrich energy minimising surfaces with applications to biomembranes , 2016, 1610.05240.

[37]  Timothy J. Healey,et al.  Symmetry-Breaking Global Bifurcation in a Surface Continuum Phase-Field Model for Lipid Bilayer Vesicles , 2015, SIAM J. Math. Anal..

[38]  S. Mayor,et al.  The mystery of membrane organization: composition, regulation and roles of lipid rafts , 2017, Nature Reviews Molecular Cell Biology.

[39]  Andreas Dedner,et al.  The Dune Python Module , 2018, ArXiv.

[40]  Tobias Kies Gradient Methods for Membrane-Mediated Particle Interactions , 2019 .

[41]  L. Giomi,et al.  Geometric pinning and antimixing in scaffolded lipid vesicles , 2018, Nature Communications.