Safety-Critical Control of Compartmental Epidemiological Models with Measurement Delays
暂无分享,去创建一个
We introduce a methodology to guarantee safety against the spread of infectious diseases by viewing epidemiological models as control systems and by considering human interventions (such as quarantining or social distancing) as control input. We consider a generalized compartmental model that represents the form of the most popular epidemiological models and we design safety-critical controllers that formally guarantee safe evolution with respect to keeping certain populations of interest under prescribed safe limits. Furthermore, we discuss how measurement delays originated from incubation period and testing delays affect safety and how delays can be compensated via predictor feedback. We demonstrate our results by synthesizing active intervention policies that bound the number of infections, hospitalizations and deaths for epidemiological models capturing the spread of COVID-19 in the USA.