The parametric symmetry and numbers of the entangled class of 2 × M × N system
暂无分享,去创建一个
[1] Lin Chen,et al. Classification of multipartite entanglement containing infinitely many kinds of states , 2006 .
[2] Lin Chen,et al. Range criterion and classification of true entanglement in a 2×M×N system , 2006 .
[3] Carl A. Miller,et al. Matrix pencils and entanglement classification , 2009, 0911.1803.
[4] L. Lamata,et al. Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .
[5] Shengchao Ding,et al. Review on the study of entanglement in quantum computation speedup , 2007 .
[6] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[7] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[8] Si-Wen Liu,et al. Entanglement for a two-parameter class of states in a high-dimension bipartite quantum system , 2010 .
[9] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[10] Marcio F. Cornelio,et al. Classification of tripartite entanglement with one qubit , 2006 .
[11] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[12] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[13] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[14] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[15] Junli Li,et al. Classification of the entangled states of 2 × N × N , 2008, 0804.2291.
[16] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[17] Marcio F. Cornelio,et al. Classification of tripartite entanglement with one qubit (9 pages) , 2006 .
[18] P. Horodecki,et al. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.