The parametric symmetry and numbers of the entangled class of 2 × M × N system

We present in the work two intriguing results in the entanglement classification of a pure and true tripartite entangled state of 2 × M × N under stochastic local operation and classical communication: (i) the internal symmetric properties of the nonlocal parameters in the continuous entangled class; (ii) the analytic expression for the total numbers of the true and pure entangled class 2 × M × N states. These properties help better understand the nature of the 2 × M × N entangled system.

[1]  Lin Chen,et al.  Classification of multipartite entanglement containing infinitely many kinds of states , 2006 .

[2]  Lin Chen,et al.  Range criterion and classification of true entanglement in a 2×M×N system , 2006 .

[3]  Carl A. Miller,et al.  Matrix pencils and entanglement classification , 2009, 0911.1803.

[4]  L. Lamata,et al.  Inductive entanglement classification of four qubits under stochastic local operations and classical communication , 2007 .

[5]  Shengchao Ding,et al.  Review on the study of entanglement in quantum computation speedup , 2007 .

[6]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[7]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[8]  Si-Wen Liu,et al.  Entanglement for a two-parameter class of states in a high-dimension bipartite quantum system , 2010 .

[9]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[10]  Marcio F. Cornelio,et al.  Classification of tripartite entanglement with one qubit , 2006 .

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[12]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[13]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[14]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[15]  Junli Li,et al.  Classification of the entangled states of 2 × N × N , 2008, 0804.2291.

[16]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[17]  Marcio F. Cornelio,et al.  Classification of tripartite entanglement with one qubit (9 pages) , 2006 .

[18]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.