A Connection between Singular Stochastic Control and Optimal Stopping

Abstract We show that the value function of a singular stochastic control problem is equal to the integral of the value function of an associated optimal stopping problem. The connection is proved for a general class of diffusions using the method of viscosity solutions.

[1]  M. Akian,et al.  On an Investment-Consumption Model With Transaction Costs , 1996 .

[2]  H. Kunita Stochastic differential equations and stochastic flows of diffeomorphisms , 1984 .

[3]  I. Karatzas A class of singular stochastic control problems , 1983, Advances in Applied Probability.

[4]  U. Haussmann,et al.  Singular Optimal Stochastic Controls II: Dynamic Programming , 1995 .

[5]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal stopping rules , 1977 .

[6]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[7]  B. Øksendal,et al.  Optimal harvesting from a population in a stochastic crowded environment. , 1997, Mathematical biosciences.

[8]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[9]  Luis H. R. Alvarez,et al.  Optimal harvesting of stochastically fluctuating populations , 1998 .

[10]  A singular stochastic control problem in an unbounded domain , 1994 .

[11]  discontinuous reflection, and a class of singular stochastic control problems for diffusions , 1993 .

[12]  Singular stochastic control for diffusions and sde with discontinuous , 1994 .

[13]  U. Haussmann,et al.  Singular Optimal Stochastic Controls I: Existence , 1995 .

[14]  Kristin Reikvam Viscosity solutions of optimal stopping problems , 1997 .

[15]  B. Øksendal,et al.  Optimal harvesting from interacting populations in a stochastic environment , 2001 .

[16]  A. Shiryaev,et al.  Optimization of the flow of dividends , 1995 .

[17]  Herman Chernoff,et al.  Sequential decisions in the control of a spaceship , 1967 .

[18]  N. Krylov Controlled Diffusion Processes , 1980 .

[19]  M. Kohlmann,et al.  Connections between optimal stopping and singular stochastic control , 1998 .

[20]  H. Witsenhausen,et al.  Some solvable stochastic control problemst , 1980 .

[21]  I. Karatzas,et al.  A new approach to the skorohod problem, and its applications , 1991 .

[22]  S. Shreve,et al.  Connections between Optimal Stopping and Singular Stochastic Control I. Monotone Follower Problems , 1984 .

[23]  S. Shreve,et al.  Connections Between Optimal Stopping and Singular Stochastic Control II. Reflected Follower Problems , 1985 .

[24]  Ioannis Karatzas,et al.  Irreversible investment and industry equilibrium , 1996, Finance Stochastics.

[25]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[26]  Ioannis Karatzas,et al.  The monotone follower problem in stochastic decision theory , 1981 .