High-speed moving horizon estimation based on automatic code generation

Recent theoretical and algorithmic advances have led to efficient algorithms that allow for real-time optimisation of processes with fast nonlinear dynamics. This paper addresses the efficient implementation of algorithms for moving horizon estimation (MHE) for obtaining real-time estimates of process states or parameters that are not measured directly. To this end, we propose to combine the previously proposed concepts of real-time iteration schemes and automatic code generation to obtain highly efficient source code of MHE algorithms. This has led to major extensions of the ACADO Code Generation tool that automatically generates customised plain C code for both model predictive control (MPC) and MHE applications. As a proof of concept, we present numerical results of controlling a nonlinear ODE model by means of combined exported MHE and MPC algorithms in a closed-loop manner. These exported algorithms turn out to be significantly faster than their generically implemented counterparts.

[1]  Hans Joachim Ferreau,et al.  Model Predictive Control Algorithms for Applications with Millisecond Timescales (Modelgebaseerde predictieve controle algoritmes voor toepassingen met milliseconde tijdschalen) , 2011 .

[2]  Johannes P. Schlöder,et al.  A real-time algorithm for moving horizon state and parameter estimation , 2011, Comput. Chem. Eng..

[3]  M. Diehl,et al.  Nonlinear receding horizon control of an underactuated hovercraft with a multiple-shooting-based algorithm , 2006 .

[4]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[5]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[6]  Hans Joachim Ferreau,et al.  An online active set strategy to overcome the limitations of explicit MPC , 2008 .

[7]  Akira Kodama,et al.  Automatic Code Generation System for Nonlinear Receding Horizon Control , 2002 .

[8]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[9]  Yonina C. Eldar,et al.  Convex Optimization in Signal Processing and Communications , 2009 .

[10]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[11]  Stephen Cameron,et al.  Advanced Guided Vehicles: Aspects of the Oxford Agv Project , 1994 .

[12]  Thomas Kailath,et al.  New square-root algorithms for Kalman filtering , 1995, IEEE Trans. Autom. Control..

[13]  Moritz Diehl,et al.  A Moving Horizon State Estimation algorithm applied to the Tennessee Eastman Benchmark Process , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[14]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[15]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[16]  H. Bock,et al.  Recent Advances in Parameteridentification Techniques for O.D.E. , 1983 .

[17]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[18]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[19]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[20]  Jan Swevers,et al.  Experimental validation of nonlinear MPC on an overhead crane using automatic code generation , 2012, 2012 American Control Conference (ACC).

[21]  V. Becerra,et al.  Applying the extended Kalman filter to systems described by nonlinear differential-algebraic equations , 2001 .

[22]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[23]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[24]  James B. Rawlings,et al.  Particle filtering and moving horizon estimation , 2006, Comput. Chem. Eng..

[25]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[26]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[27]  J. Rawlings,et al.  Nonlinear Moving Horizon State Estimation , 1995 .

[28]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..