In-situ high-resolution transmission electron microscopy investigation of grain boundary dislocation activities in a nanocrystalline CrMnFeCoNi high-entropy alloy

[1]  S. Ringer,et al.  Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion , 2016 .

[2]  Robert O. Ritchie,et al.  Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi , 2015, Nature Communications.

[3]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[4]  Gunther Eggeler,et al.  Microstructural evolution of a CoCrFeMnNi high-entropy alloy after swaging and annealing , 2015 .

[5]  Reinhard Pippan,et al.  Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation , 2015 .

[6]  R. Ritchie,et al.  Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy , 2015, JOM.

[7]  X. Liao,et al.  Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing , 2015 .

[8]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[9]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[10]  Jien-Wei Yeh,et al.  Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy , 2014 .

[11]  Shuang Han,et al.  Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope , 2014 .

[12]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[13]  E. George,et al.  Tensile properties of high- and medium-entropy alloys , 2013 .

[14]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[15]  X. Yang,et al.  Alloy Design and Properties Optimization of High-Entropy Alloys , 2012 .

[16]  N. Gao,et al.  Evolution of microstructural homogeneity in copper processed by high-pressure torsion , 2010 .

[17]  Amit Misra,et al.  In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites , 2010 .

[18]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[19]  D. Medlin,et al.  Structural duality of 1/3⟨111⟩ twin-boundary disconnections , 2005 .

[20]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[21]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[22]  Jian Yu Huang,et al.  Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening , 2001 .

[23]  Merkle,et al.  Grain-boundary dissociation by the emission of stacking faults. , 1996, Physical review. B, Condensed matter.

[24]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[25]  S. Amelinckx,et al.  Stacking Fault Energy in Silicon , 1962 .