A distance to the Large Magellanic Cloud that is precise to one per cent
暂无分享,去创建一个
B. Pilecki | D. Graczyk | N. Nardetto | R. P. Kudritzki | P. Kervella | A. Gallenne | J. Storm | I. B. Thompson | R. Kudritzki | F. Bresolin | W. Gieren | S. Villanova | N. Nardetto | P. Kervella | A. Gallenne | P. Konorski | R. Smolec | J. Storm | D. Graczyk | B. Pilecki | I. Thompson | P. Karczmarek | M. Górski | K. Suchomska | M. Taormina | B. Zgirski | S. Villanova | W. Gieren | F. Bresolin | G. Pietrzyński | P. Karczmarek | M. Górski | K. Suchomska | M. Taormina | B. Zgirski | P. Wielgórski | Z. Kołaczkowski | P. Konorski | R. Smolec | W. Narloch | P. Wielgórski | Z. Kołaczkowski | G. Pietrzyński | W. Narloch | G. Pietrzyński | I. B. Thompson | I. Thompson
[1] B. Shylaja,et al. Stellar masses , 2002 .
[2] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[3] A. Jacyszyn-Dobrzeniecka. OGLE-ing the Magellanic System: Three-Dimensional Structure , 2018, Proceedings of the International Astronomical Union.
[4] K. Ulaczyk,et al. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XII. Eclipsing Binary Stars in the Large Magellanic Cloud , 2011, 1108.0446.
[5] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[6] DAVID S. Evans. Fundamental data for southern stars , 1966 .
[7] Martin G. Cohen,et al. THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.
[8] A. Cousins. UBV photometry of E region standard stars of intermediate brightness , 1983 .
[9] H. Helfer,et al. A New Photometric Metal Abundance and Luminosity Calibration for Field G and K Giants , 1975 .
[10] John Southworth,et al. Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models , 2010, 1006.4443.
[11] R. Kudritzki,et al. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.
[12] Michael S. Bessell,et al. The Hipparcos and Tycho Photometric System Passbands , 2000 .
[13] David O. Jones,et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.
[14] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[15] R. L. Kurucz,et al. New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.
[16] Three dimensional maps of the Magellanic Clouds using RR~Lyrae stars and Cepheids - I. The Large Magellanic Cloud , 2012, 1207.5791.
[17] J.-C. Mermilliod,et al. The General Catalogue of Photometric Data (GCPD). II. , 1997 .
[18] C. D. Laney,et al. A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.
[19] Santiago Arribas,et al. The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .
[20] J. Monnier,et al. A Geometrical 1% Distance to the Short-period Binary Cepheid V1334 Cygni , 2018, The Astrophysical Journal.
[21] R. H. Stoy. Photoelectric Magnitudes and Colours for Bright Southern Stars , 1956 .
[22] J. Southworth. HSTEP – Homogeneous Studies of Transiting Extrasolar Planets , 2012, Proceedings of the International Astronomical Union.
[23] Robert E. Wilson,et al. Realization of Accurate Close-Binary Light Curves: Application to MR Cygni , 1971 .
[24] Pierre Kervella,et al. The Late-type Eclipsing Binaries in the Large Magellanic Cloud: Catalog of Fundamental Physical Parameters , 2018, The Astrophysical Journal.
[26] J. Irwin. Southern Cepheid Photometry. , 1961 .
[27] G. Benedetto,et al. Predicting accurate stellar angular diameters by the near-infrared surface brightness technique , 2005 .
[28] John Southworth,et al. Homogeneous studies of transiting extrasolar planets – I. Light-curve analyses , 2008, 0802.3764.
[29] H. L. Johnson,et al. UBVRIJKL Photometry of the Bright Stars , 1966 .
[30] Nicholas B. Suntzeff,et al. New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002 .
[31] N. Kallivayalil,et al. THIRD-EPOCH MAGELLANIC CLOUD PROPER MOTIONS. II. THE LARGE MAGELLANIC CLOUD ROTATION FIELD IN THREE DIMENSIONS , 2013, 1305.4641.
[32] A. Walker,et al. Measuring Improved Distances to Nearby Galaxies: The Araucaria Project , 2005 .
[33] W. Gieren,et al. Observational calibration of the projection factor of Cepheids IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids , 2017, 1708.09851.
[34] R. I. Anderson,et al. The Araucaria Project: accurate stellar parameters and distance to evolved eclipsing binary ASAS J180057-2333.8 in Sagittarius Arm , 2015, 1505.00766.
[35] C. Barache,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[36] A. Walker. The Large Magellanic Cloud and the distance scale , 2011, 1112.3171.
[37] L. Szabados,et al. Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars , 2017, 1705.00688.
[38] P. Flower,et al. Transformations from Theoretical Hertzsprung-Russell Diagrams to Color-Magnitude Diagrams: Effective Temperatures, B-V Colors, and Bolometric Corrections , 1996 .
[39] F. Castelli,et al. Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .
[40] B. Madore,et al. The Hubble Constant , 2010, 1004.1856.
[41] R. Kudritzki,et al. THE ARAUCARIA PROJECT. THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM LATE-TYPE ECLIPSING BINARIES , 2013, 1311.2340.
[42] W. Gieren,et al. Fundamental properties of red-clump stars from long-baseline H-band interferometry , 2018, Astronomy & Astrophysics.
[43] R. I. Anderson,et al. The Araucaria Project: High-precision orbital parallax and masses of the eclipsing binary TZ~Fornacis , 2015, 1511.07971.
[44] S. E. Persson,et al. New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .
[45] B. Paczynski,et al. Cluster AgeS Experiment: The Age and Distance of the Globular Cluster ω Centauri Determined from Observations of the Eclipsing Binary OGLEGC 17 , 2000, astro-ph/0012493.
[46] E. Grebel,et al. THREE-DIMENSIONAL MAPS OF THE MAGELLANIC CLOUDS USING RR LYRAE STARS AND CEPHEIDS. II. THE SMALL MAGELLANIC CLOUD , 2012, 1207.5791.
[47] Guillermo Torres,et al. BINARY ORBIT, PHYSICAL PROPERTIES, AND EVOLUTIONARY STATE OF CAPELLA (α AURIGAE) , 2009, 0906.0977.
[48] R. Poleski,et al. Concluding Henrietta Leavitt's Work on Classical Cepheids in the Magellanic System and Other Updates of the OGLE Collection of Variable Stars , 2017, 1706.09452.
[49] Joseph M. Mazzarella. NED for a New Era , 2007 .
[50] G. Worthey,et al. AN EMPIRICAL UBV RI JHK COLOR–TEMPERATURE CALIBRATION FOR STARS , 2006, astro-ph/0604590.
[51] J. J. González-Vidal,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[52] W. Gieren,et al. Testing Systematics of Gaia DR2 Parallaxes with Empirical Surface Brightness: Color Relations Applied to Eclipsing Binaries , 2019, The Astrophysical Journal.
[53] A. Cousins,et al. Photoelectric magnitudes and colours of southern stars , 1963 .