HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR

Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics.

[1]  E. Spillar,et al.  Photometric Redshifts of Galaxies , 1986 .

[2]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[3]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[4]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[5]  Purushottam W. Laud,et al.  Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .

[6]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[7]  Roger D. Blandford,et al.  Intrinsic and extrinsic galaxy alignment , 2000, astro-ph/0005470.

[8]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[9]  Concentrations of Dark Halos from Their Assembly Histories , 2001, astro-ph/0108151.

[10]  P. Schneider,et al.  B-modes in cosmic shear from source redshift clustering , 2002 .

[11]  Masahiro Takada,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2006 .

[12]  Sarah Bridle,et al.  Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.

[13]  T. Kitching,et al.  Bayesian galaxy shape measurement for weak lensing surveys – I. Methodology and a fast-fitting algorithm , 2007, 0708.2340.

[14]  Gersende Fort,et al.  Estimation of cosmological parameters using adaptive importance sampling , 2009, 0903.0837.

[15]  R. Dorazio On selecting a prior for the precision parameter of Dirichlet process mixture models , 2009 .

[16]  S. Bridle,et al.  Limitations of model-fitting methods for lensing shear estimation , 2009, 0905.4801.

[17]  Simon D. M. White,et al.  One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.

[18]  Dilan Görür,et al.  Dirichlet process Gaussian mixture models: choice of the base distribution , 2010 .

[19]  Adam D. Myers,et al.  INFERRING THE ECCENTRICITY DISTRIBUTION , 2010, 1008.4146.

[20]  Geoffrey I. Webb,et al.  Encyclopedia of Machine Learning , 2011, Encyclopedia of Machine Learning.

[21]  ANALYTICAL GALAXY PROFILES FOR PHOTOMETRIC AND LENSING ANALYSIS , 2010, 1007.3248.

[22]  Gary M. Bernstein,et al.  Shape measurement biases from underfitting and ellipticity gradients , 2010, 1001.2333.

[23]  M. Bartelmann,et al.  Limitations on shapelet-based weak-lensing measurements , 2009, 0906.5092.

[24]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[25]  I. Szapudi,et al.  FAST GENERATION OF ENSEMBLES OF COSMOLOGICAL N-BODY SIMULATIONS VIA MODE RESAMPLING , 2011, 1103.2767.

[26]  Lianming Wang,et al.  Fast Bayesian Inference in Dirichlet Process Mixture Models , 2011, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[27]  Stefan Hilbert,et al.  COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.

[28]  D. Hogg,et al.  PROBABILISTIC CATALOGS FOR CROWDED STELLAR FIELDS , 2012, 1211.5805.

[29]  T. Sweeting,et al.  Selecting the precision parameter prior in Dirichlet process mixture models , 2012 .

[30]  Benjamin Joachimi,et al.  Putting the precision in precision cosmology: How accurate should your data covariance matrix be? , 2012, 1212.4359.

[31]  B. Wandelt,et al.  Bayesian physical reconstruction of initial conditions from large-scale structure surveys , 2012, 1203.3639.

[32]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.

[33]  S. Bridle,et al.  im3shape: a maximum likelihood galaxy shear measurement code for cosmic gravitational lensing , 2013, 1302.0183.

[34]  T. Kitching,et al.  On the Probability Distributions of Ellipticity , 2013, 1309.7844.

[35]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[36]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[37]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[38]  Scott Dodelson,et al.  The Effect of Covariance Estimator Error on Cosmological Parameter Constraints , 2013, 1304.2593.

[39]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[40]  Benjamin Dan Wandelt,et al.  ournal of C osmology and A stroparticle hysics J Past and present cosmic structure in the SDSS DR7 main sample , 2022 .

[41]  W. Dawson,et al.  Complementarity of LSST and WFIRST: Regarding Object Blending , 2014 .

[42]  H. Hoekstra,et al.  3D cosmic shear: cosmology from CFHTLenS , 2014, 1401.6842.

[43]  E. Sheldon An implementation of Bayesian lensing shear measurement , 2014, 1403.7669.

[44]  Gary M. Bernstein,et al.  Bayesian lensing shear measurement , 2013, 1304.1843.

[45]  Michael Hirsch,et al.  Sersic galaxy models in weak lensing shape measurement: model bias, noise bias and their interaction , 2013, 1308.4663.

[46]  J. Peacock,et al.  Remapping dark matter halo catalogues between cosmological simulations , 2013, 1308.5183.

[47]  Michael D. Schneider,et al.  GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology , 2014, 1412.1825.

[48]  S. Hilbert,et al.  Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering , 2014, 1405.5888.