Minimax Rank Estimation for Subspace Tracking

Rank estimation is a classical model order selection problem that arises in a variety of important statistical signal and array processing systems, yet is addressed relatively infrequently in the extant literature. Here we present sample covariance asymptotics stemming from random matrix theory, and bring them to bear on the problem of optimal rank estimation in the context of the standard array observation model with additive white Gaussian noise. The most significant of these results demonstrates the existence of a phase transition threshold, below which eigenvalues and associated eigenvectors of the sample covariance fail to provide any information on population eigenvalues. We then develop a decision-theoretic rank estimation framework that leads to a simple ordered selection rule based on thresholding; in contrast to competing approaches, however, it admits asymptotic minimax optimality and is free of tuning parameters. We analyze the asymptotic performance of our rank selection procedure and conclude with a brief simulation study demonstrating its practical efficacy in the context of subspace tracking.

[1]  Patrick O. Perry,et al.  Bi-cross-validation of the SVD and the nonnegative matrix factorization , 2009, 0908.2062.

[2]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[3]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[4]  Donald W. Tufts,et al.  Two algorithms for fast approximate subspace tracking , 1999, IEEE Trans. Signal Process..

[5]  Steve Bartelmaos,et al.  Fast Principal Component Extraction Using Givens Rotations , 2008, IEEE Signal Processing Letters.

[6]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[7]  Miao Shi,et al.  Adaptive estimation of the number of transmit antennas , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[8]  Roland Badeau,et al.  Fast and Stable YAST Algorithm for Principal and Minor Subspace Tracking , 2008, IEEE Transactions on Signal Processing.

[9]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[10]  Noureddine El Karoui A rate of convergence result for the largest eigenvalue of complex white Wishart matrices , 2004, math/0409610.

[11]  Zongming Ma,et al.  Accuracy of the Tracy–Widom limits for the extreme eigenvalues in white Wishart matrices , 2012, 1203.0839.

[12]  Bin Yang,et al.  Adaptive rank estimation for spherical subspace trackers , 1996, IEEE Trans. Signal Process..

[13]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[14]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[15]  Alan Edelman,et al.  Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples , 2007, IEEE Transactions on Signal Processing.

[16]  George V. Moustakides,et al.  Fast and Stable Subspace Tracking , 2008, IEEE Transactions on Signal Processing.

[17]  B. Nadler,et al.  Determining the number of components in a factor model from limited noisy data , 2008 .

[18]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[19]  Z. Bai,et al.  Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.

[20]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[21]  Zongming Ma,et al.  Accuracy of the Tracy-Widom limit for the largest eigenvalue in white Wishart matrices , 2008, 0810.1329.

[22]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[23]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[24]  Daniel J. Rabideau,et al.  Fast, rank adaptive subspace tracking and applications , 1996, IEEE Trans. Signal Process..

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  S. P. Hastings,et al.  A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation , 1980 .