The role of cysteine proteases in intracellular pancreatic serine protease activation.

[1]  A. Saluja,et al.  Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[2]  M. Lerch,et al.  Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. , 1998, American journal of physiology. Gastrointestinal and liver physiology.

[3]  J. Grendell,et al.  Codistribution of TAP and the granule membrane protein GRAMP-92 in rat caerulein-induced pancreatitis. , 1998, American journal of physiology. Gastrointestinal and liver physiology.

[4]  L. Balsam,et al.  l-Arginine inhibits vasopressin-stimulated mesangial cell Ca2. , 1998, American journal of physiology. Cell physiology.

[5]  M. Lerch,et al.  Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. , 1998, American journal of physiology. Gastrointestinal and liver physiology.

[6]  M. Lerch,et al.  Direct detection of premature protease activation in living pancreatic acinar cells. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[7]  Y. Yamaguchi,et al.  Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. , 1997, Gastroenterology.

[8]  M. Gorry,et al.  Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene , 1996, Nature Genetics.

[9]  A. Mariani,et al.  Gabexate for the prevention of pancreatic damage related to endoscopic retrograde cholangiopancreatography. Gabexate in digestive endoscopy--Italian Group. , 1996, The New England journal of medicine.

[10]  M. Lerch,et al.  Experimental animal models of acute pancreatitis. , 1994, International journal of pancreatology : official journal of the International Association of Pancreatology.

[11]  M. Lerch,et al.  The effect of chloroquine administration on two experimental models of acute pancreatitis. , 1993, Gastroenterology.

[12]  V. Go The Pancreas : biology, pathobiology, and disease , 1993 .

[13]  S. Leach,et al.  Intracellular proteolysis of pancreatic zymogens. , 1992, The Yale journal of biology and medicine.

[14]  D. Rattner,et al.  Trypsinogen-activation peptides in experimental rat pancreatitis: prognostic implications and histopathologic correlates. , 1992, Gastroenterology.

[15]  J. Tooze,et al.  Regulated secretion of mature cathepsin B from rat exocrine pancreatic cells. , 1991, European journal of cell biology.

[16]  G. Adler,et al.  Evidence of intracellular activation of serine proteases in acute cerulein-induced pancreatitis in rats. , 1991, Scandinavian journal of gastroenterology.

[17]  S. Leach,et al.  Intracellular activation of digestive zymogens in rat pancreatic acini. Stimulation by high doses of cholecystokinin. , 1991, The Journal of clinical investigation.

[18]  A. Barrett,et al.  Possible lysosomal activation of pancreatic zymogens. Activation of both human trypsinogens by cathepsin B and spontaneous acid. Activation of human trypsinogen 1. , 1988, Biological chemistry Hoppe-Seyler.

[19]  J. Meldolesi,et al.  Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. , 1987, The American journal of physiology.

[20]  J. Meldolesi,et al.  The cell biology of experimental pancreatitis. , 1987, The New England journal of medicine.

[21]  K. Ohlsson,et al.  Protease inhibitors in acute human pancreatitis. Correlation between biochemical changes and clinical course. , 1984, Scandinavian journal of gastroenterology.

[22]  J. Meldolesi,et al.  Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. , 1984, The American journal of physiology.