The Influence of Mechanical Alloying and Plastic Consolidation on the Resistance to Arc Erosion of the Ag–Re Composite Contact Material
暂无分享,去创建一个
K. Marszowski | A. Kowalski | P. Borkowski | Ł. Wierzbicki | J. Karwan-Baczewska | M. Kaminska | J. Kulasa | B. Juszczyk | M. Lis | Dariusz Kołacz | S. Księżarek | Mariusz Jabłoński
[1] X. Fang,et al. Interface strengthening and fracture characteristics of the Ag-based contact materials reinforced with nanoporous SnO2(Cu, CuO) phases , 2021 .
[2] Xianhui Wang,et al. Effect of electric load characteristics on the arc erosion behavior of Ag-8wt.%Ni electrical contact material prepared by spark plasma sintering , 2021 .
[3] Chunsheng Zhou,et al. Enhancing properties of AgTiB2 contact material by CuO semi-coated TiB2 composite particles , 2021 .
[4] Song Wang,et al. Preparation and arc erosion behavior of AgNi10 contact material with different allotropes of carbon addition , 2020, Diamond and Related Materials.
[5] Tianyang Yang,et al. Improved fracture resistance of the Ag/SnO2 contact materials using Cu nanoparticles as additive , 2020 .
[6] Xianhui Wang,et al. Effect of Ni addition on the arc-erosion behavior of Ag-4 wt.%SnO2 electrical contact material , 2020 .
[7] Xianhui Wang,et al. Investigation on arc behavior of AgNi electrical contact material with three-dimensional network structure , 2020 .
[8] Tianyang Yang,et al. The effects of oxide additives on the mechanical characteristics of Ag–SnO2 electrical contact materials , 2020 .
[9] Chunping Wu,et al. Influence of fabrication technology on arc erosion of Ag/10SnO2 electrical contact materials , 2018, Journal of Alloys and Compounds.
[10] W. Wolany,et al. A rhenium review – from discovery to novel applications , 2016 .
[11] D. Kumar,et al. CNT Reinforced Silver Nanocomposites: Mechanical and Electrical Studies , 2016 .
[12] B. Kim,et al. Fabrication of Ag–SnO2 Contact Materials from Gas‐Atomized Ag–Sn Powder Using Combined Oxidation and Ball‐Milling Process , 2016 .
[13] A. Çanakçı,et al. Effect of the CNT Content on Microstructure, Physical and Mechanical Properties of Cu-Based Electrical Contact Materials Produced by Flake Powder Metallurgy , 2015 .
[14] K. Bilewska,et al. Nanocrystalline Ag-Re composite as a potential material for electric contacts fabrication , 2014 .
[15] I. Shabalin. Ultra-High Temperature Materials I: Carbon (Graphene/Graphite) and Refractory Metals , 2014 .
[16] P. Borkowski,et al. The influence of the microstructure on the switching properties of Ag C, Ag-WC-C and Ag-W-C contact materials , 2013 .
[17] P. Borkowski,et al. Switching Properties of Contacts Made of Silver-Tungsten and Silver-Tungsten-Rhenium Composite Materials , 2013, 2013 IEEE 59th Holm Conference on Electrical Contacts (Holm 2013).
[18] Pozna,et al. Wyciskanie metali i stopów metod ą KOBO Extrusion of metals and alloys by KOBO method , 2013 .
[19] J. McBride,et al. Fine transfer in electrical switching contacts using gold coated carbon-nanotubes , 2012 .
[20] Chen Xue-guang,et al. Study on electrical contact properties of Ag-SnO2 contact material , 2012 .
[21] P. Borkowski,et al. Progress in fabrication technology of silver-based contact materials with particular account of the Ag-Re and Ag-SnO2Bi2O3 composites , 2012 .
[22] K. Marszowski,et al. Aspekty technologiczne przeróbki plastycznej kompozytowego materiału stykowego Ag-Re(5, 8 i 10) % wag , 2011 .
[23] Yi Feng,et al. Influence of graphite content on sliding wear characteristics of CNTs-Ag-G electrical contact materials , 2009 .
[24] P. Borkowski. Modelowanie i badanie erozji styków , 2008 .
[25] Yi Feng,et al. Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes , 2005 .