Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation

The present paper contributes to the field of flexible multibody systems dynamics. Two new solid finite elements employing the absolute nodal coordinate formulation are presented. In this formulation, the equations of motion contain a constant mass matrix and a vector of generalized gravity forces, but the vector of elastic forces is highly nonlinear. The proposed solid eight node brick element with 96 degrees of freedom uses translations of nodes and finite slopes as sets of nodal coordinates. The displacement field is interpolated using incomplete cubic polynomials providing the absence of shear locking effect. The use of finite slopes describes the deformed shape of the finite element more exactly and, therefore, minimizes the number of finite elements required for accurate simulations. Accuracy and convergence of the finite element is demonstrated in nonlinear test problems of statics and dynamics. [DOI: 10.1115/1.4024910]

[1]  Dmitry Pogorelov,et al.  Some Developments in Computational Techniques in Modeling Advanced Mechanical Systems , 1997 .

[2]  Oleg Dmitrochenko,et al.  Three- and four-noded planar elements using absolute nodal coordinate formulation , 2013 .

[3]  A. Mikkola,et al.  Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation , 2008 .

[4]  A. Shabana Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation , 1997 .

[5]  C. Rankin,et al.  An element independent corotational procedure for the treatment of large rotations , 1986 .

[6]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[7]  P. Frank Pai,et al.  Geometrically exact 3D beam element for arbitrary large rigid-elastic deformation analysis of aerospace structures , 2011 .

[8]  Stefan von Dombrowski,et al.  Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates , 2002 .

[9]  Peter Eberhard,et al.  Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates , 2003 .

[10]  Carlos A. Felippa,et al.  A compendium of FEM integration formulas for symbolic work , 2004 .

[11]  Wan-Suk Yoo,et al.  A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip , 2005 .

[12]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[13]  Aki Mikkola,et al.  Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation , 2011 .

[14]  Aki Mikkola,et al.  Shear Correction for Thin Plate Finite Elements Based on the Absolute Nodal Coordinate Formulation , 2009 .

[15]  P. Frank Pai,et al.  Highly Flexible Structures : Modeling, Computation, and Experimentation , 2007 .

[16]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[17]  J. Z. Zhu,et al.  The finite element method , 1977 .

[18]  J. Gerstmayr,et al.  A 3D Finite Element Method for Flexible Multibody Systems , 2006 .

[19]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[20]  M. Salimi,et al.  Comparison of finite element method based on nodal displacement and absolute nodal coordinate formulation (ANCF) in thin shell analysis , 2011 .

[21]  Ahmed A. Shabana,et al.  Flexible Multibody Dynamics: Review of Past and Recent Developments , 1997 .

[22]  O. C. Zienkiewicz,et al.  The finite element method, fourth edition; volume 2: solid and fluid mechanics, dynamics and non-linearity , 1991 .

[23]  Oleg Dmitrochenko,et al.  Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation , 2003 .

[24]  J. Kosmatka,et al.  An improved two-node timoshenko beam finite element , 1993 .

[25]  Ahmed A. Shabana,et al.  APPLICATION OF THE ABSOLUTE NODAL CO-ORDINATE FORMULATION TO MULTIBODY SYSTEM DYNAMICS , 1997 .

[26]  Aki Mikkola,et al.  Extended Digital Nomenclature Code for Description of Complex Finite Elements and Generation of New Elements , 2011 .

[27]  K. Nachbagauer,et al.  A Spatial Thin Beam Finite Element Based on the Absolute Nodal Coordinate Formulation Without Singularities , 2011 .

[28]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .