Derivation and analysis of Lattice Boltzmann schemes for the linearized Euler equations

We derive Lattice Boltzmann (LBM) schemes to solve the Linearized Euler Equations in 1D, 2D, and 3D with the future goal of coupling them to an LBM scheme for Navier Stokes Equations and a Finite Volume scheme for Linearized Euler Equations. The derivation uses the analytical Maxwellian in a BGK model. In this way, we are able to obtain second-order schemes. In addition, we perform an L 2 -stability analysis. Numerical results validate the approach.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  P. Dellar Two routes from the Boltzmann equation to compressible flow of polyatomic gases , 2008 .

[3]  Iliya V. Karlin,et al.  Perfect entropy functions of the Lattice Boltzmann method , 1999 .

[4]  Kyung Wan Roh,et al.  FINITE ELEMENT BASED FORMULATION OF THE LATTICE BOLTZMANN EQUATION , 2009 .

[5]  C. Bogey,et al.  Computation of Flow Noise Using Source Terms in Linearized Euler's Equations , 2000 .

[6]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[7]  L. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .

[8]  P. Lallemand,et al.  Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Ray Hixon,et al.  Use of Linearized Euler Equations for Supersonic Jet Noise Prediction , 1998 .

[10]  R. LeVeque Wave Propagation Algorithms for Multidimensional Hyperbolic Systems , 1997 .

[11]  S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2001 .

[12]  Pierre Sagaut,et al.  Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics , 2009, J. Comput. Phys..

[13]  Zhaoxia Yang,et al.  Convergence of lattice Boltzmann methods for Navier–Stokes flows in periodic and bounded domains , 2009, Numerische Mathematik.

[14]  C. Bailly,et al.  Numerical Solution of Acoustic Propagation Problems Using linearized Euler's Equations* , 2000 .

[15]  Hudong Chen,et al.  H-theorem and origins of instability in thermal lattice Boltzmann models , 2000 .

[16]  Axel Klar,et al.  A Stability Notion for Lattice Boltzmann Equations , 2006, SIAM J. Sci. Comput..

[17]  Franz Durst,et al.  Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries , 1999 .

[18]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[19]  S. Roller,et al.  Towards aeroacoustic sound generation by flow through porous media , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[21]  D. M. Campbell,et al.  Lattice BGK simulation of sound waves , 1998 .

[22]  François Golse,et al.  The Acoustic Limit for the Boltzmann Equation , 2000 .

[23]  R. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .

[24]  Taehun Lee,et al.  A characteristic Galerkin method for discrete Boltzmann equation , 2001 .

[25]  Matthew G. Knepley,et al.  PyClaw: Accessible, Extensible, Scalable Tools for Wave Propagation Problems , 2011, SIAM J. Sci. Comput..

[26]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[27]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[28]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Shi Jin,et al.  A Smooth Transition Model between Kinetic and Diffusion Equations , 2004, SIAM J. Numer. Anal..

[30]  L. Mongeau,et al.  Fundamental Aeroacoustic Capabilities of the Lattice-Boltzmann Method , 2006 .

[31]  Sabine Roller,et al.  Multi-scale Lattice Boltzmann simulations on distributed octrees , 2014 .

[32]  Randall J. LeVeque,et al.  A wave propagation method for three-dimensional hyperbolic conservation laws , 2000 .

[33]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[34]  Wen-An Yong,et al.  An Onsager-like relation for the lattice Boltzmann method , 2008, Comput. Math. Appl..

[35]  P. Dellar Bulk and shear viscosities in lattice Boltzmann equations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Michael Dumbser,et al.  Calculation of low Mach number acoustics : a comparison of MPV, EIF and linearized Euler equations , 2005 .

[37]  M. Tsutahara,et al.  Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Wen-An Yong,et al.  Weighted L2-Stability of the Lattice Boltzmann Method , 2009, SIAM J. Numer. Anal..

[39]  C. T. Fike,et al.  Norms and exclusion theorems , 1960 .

[40]  Shiyi Chen,et al.  Stability Analysis of Lattice Boltzmann Methods , 1993, comp-gas/9306001.

[41]  Luc Mieussens,et al.  A smooth transition model between kinetic and hydrodynamic equations , 2005 .