Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides.

[1]  M. Doležal,et al.  Alkylamino derivatives of pyrazinamide: synthesis and antimycobacterial evaluation. , 2014, Bioorganic & medicinal chemistry letters.

[2]  O. Soukup,et al.  Synthesis, Antimycobacterial Activity and In Vitro Cytotoxicity of 5-Chloro-N-phenylpyrazine-2-carboxamides , 2013, Molecules.

[3]  L. Chiarelli,et al.  The DprE1 enzyme, one of the most vulnerable targets of Mycobacterium tuberculosis , 2013, Applied Microbiology and Biotechnology.

[4]  M. Doležal,et al.  Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. , 2013, Bioorganic & medicinal chemistry letters.

[5]  Alimuddin Zumla,et al.  Drug-resistant tuberculosis: time for visionary political leadership. , 2013, The Lancet. Infectious diseases.

[6]  Alimuddin Zumla,et al.  Advances in the development of new tuberculosis drugs and treatment regimens , 2013, Nature Reviews Drug Discovery.

[7]  C. Sotriffer,et al.  MycPermCheck: the Mycobacterium tuberculosis permeability prediction tool for small molecules , 2013, Journal of Cheminformatics.

[8]  R. Wintjens,et al.  Systematic Analysis of Pyrazinamide-Resistant Spontaneous Mutants and Clinical Isolates of Mycobacterium tuberculosis , 2012, Antimicrobial Agents and Chemotherapy.

[9]  J. Jampílek,et al.  Synthesis and antimycobacterial evaluation of N-substituted 3-aminopyrazine-2,5-dicarbonitriles. , 2012, Bioorganic & medicinal chemistry letters.

[10]  M. Doležal,et al.  Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. , 2011, Current pharmaceutical design.

[11]  Ying Zhang,et al.  Pyrazinamide Inhibits Trans-Translation in Mycobacterium tuberculosis , 2011, Science.

[12]  W. Jacobs,et al.  Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. , 2011, Bioorganic & medicinal chemistry letters.

[13]  P. Jílek,et al.  Synthesis and antimycobacterial properties of N-substituted 6-amino-5-cyanopyrazine-2-carboxamides. , 2011, Bioorganic & medicinal chemistry.

[14]  David E. Gloriam,et al.  The SMARTCyp cytochrome P450 metabolism prediction server , 2010, Bioinform..

[15]  David E. Gloriam,et al.  SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism. , 2010, ACS medicinal chemistry letters.

[16]  A. J. van der Ven,et al.  Antituberculosis drug‐induced hepatotoxicity: Concise up‐to‐date review , 2008, Journal of gastroenterology and hepatology.

[17]  Alain R. Baulard,et al.  Organization of the mycobacterial cell wall: a nanoscale view , 2008, Pflügers Archiv - European Journal of Physiology.

[18]  G. Besra,et al.  Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis , 2005, Clinical Microbiology Reviews.

[19]  D. Mitchison,et al.  The curious characteristics of pyrazinamide: a review. , 2003, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[20]  Robert H. Gilman,et al.  Rapid, Low-Technology MIC Determination with Clinical Mycobacterium tuberculosis Isolates by Using the Microplate Alamar Blue Assay , 1998, Journal of Clinical Microbiology.

[21]  G. Baker,et al.  Involvement of CYP2D6, CYP3A4, and other cytochrome P-450 isozymes in N-dealkylation reactions. , 1994, Journal of pharmacological and toxicological methods.

[22]  B. Foster,et al.  Metabolism of amphetamines by Mycobacterium smegmatis. , 1980, Canadian Journal of Microbiology (print).