Plant molecular diversity and applications to genomics.

Surveys of nucleotide diversity are beginning to show how genomes have been shaped by evolution. Nucleotide diversity is also being used to discover the function of genes through the mapping of quantitative trait loci (QTL) in structured populations, the positional cloning of strong QTL, and association mapping.

[1]  E S Buckler,et al.  Structure of linkage disequilibrium and phenotypic associations in the maize genome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  N. Risch Searching for genetic determinants in the new millennium , 2000, Nature.

[3]  M. Daly,et al.  High-resolution haplotype structure in the human genome , 2001, Nature Genetics.

[4]  M. Kimura The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. , 1969, Genetics.

[5]  B. Gaut,et al.  Nucleotide polymorphism in the Adh1 locus of pearl millet (Pennisetum glaucum) (Poaceae). , 1993, Genetics.

[6]  D. Charlesworth,et al.  The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase locus in the plant genus Leavenworthia. , 1999, Genetics.

[7]  Brandon S. Gaut,et al.  Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Stahl,et al.  Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis , 1999, Nature.

[9]  A. Henry,et al.  High rates of polymorphism and recombination at the Opaque-2 locus in cultivated maize , 1997, Molecular and General Genetics MGG.

[10]  J. Doebley,et al.  The evolution of apical dominance in maize , 1997, Nature.

[11]  E. Stahl,et al.  Evolutionary Dynamics of Plant R-Genes , 2001, Science.

[12]  T. Helentjaris,et al.  Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits , 1987 .

[13]  B. Charlesworth,et al.  The effect of deleterious mutations on neutral molecular variation. , 1993, Genetics.

[14]  S. Kresovich,et al.  Molecular diversity, structure and domestication of grasses. , 2001, Genetical research.

[15]  M. Uyenoyama,et al.  Allelic Diversity and Gene Genealogy at the Self-Incompatibility Locus in the Solanaceae , 1996, Science.

[16]  M. Yano,et al.  Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS , 2000, Plant Cell.

[17]  J. Wendel,et al.  Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. , 1987, Genetics.

[18]  C. Aquadro,et al.  Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster , 1992, Nature.

[19]  B. Weir,et al.  Allozyme diversity in plant species. , 1990 .

[20]  K. Lamkey,et al.  Hardy-Weinberg and linkage equilibrium estimates in the BSSS and BSCB1 random mated populations , 2000 .

[21]  N. Miyashita DNA variation in the 5' upstream region of the Adh locus of the wild plants Arabidopsis thaliana and Arabis gemmifera. , 2001, Molecular biology and evolution.

[22]  S. Muse Examining rates and patterns of nucleotide substitution in plants , 2004, Plant Molecular Biology.

[23]  J. Pritchard,et al.  Use of unlinked genetic markers to detect population stratification in association studies. , 1999, American journal of human genetics.

[24]  R. Terauchi,et al.  Intragenic recombination in the Adh locus of the wild plant Arabidopsis thaliana. , 1996, Genetics.

[25]  J. Wendel,et al.  Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). , 1999, Molecular biology and evolution.

[26]  W. Stephan,et al.  Species and recombination effects on DNA variability in the tomato genus. , 2001, Genetics.

[27]  D. Charlesworth,et al.  Genetic diversity in Leavenworthia populations with different inbreeding levels , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[29]  H. Fu,et al.  The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Fridman,et al.  A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Purugganan,et al.  Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. , 1999, Genetics.

[32]  K. Olsen,et al.  Evidence on the origin of cassava: phylogeography of Manihot esculenta. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  C. Halldén,et al.  Positive correlation between recombination rates and levels of genetic variation in natural populations of sea beet (Beta vulgaris subsp. maritima). , 1998, Genetics.

[34]  A. Eyre-Walker,et al.  Investigation of the bottleneck leading to the domestication of maize. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Aguadé,et al.  Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. , 2000, Genetics.

[36]  C. Langley,et al.  Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. , 2000, Molecular biology and evolution.

[37]  B. Gaut,et al.  Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. , 1998, Genetics.

[38]  J. Doebley,et al.  The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. , 1999, Genetics.

[39]  B. Weir,et al.  Plant Population Genetics, Breeding, and Genetic Resources , 1989 .

[40]  Jody Hey,et al.  The limits of selection during maize domestication , 1999, Nature.

[41]  G. Churchill,et al.  Properties of statistical tests of neutrality for DNA polymorphism data. , 1995, Genetics.

[42]  M. P. Cummings,et al.  Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  T. Sharbel,et al.  Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe , 2000, Molecular ecology.

[44]  M. Yano,et al.  Genetic and molecular dissection of quantitative traits in rice , 1997, Plant Molecular Biology.

[45]  J. Doebley Molecular Systematics and Crop Evolution , 1992 .

[46]  S. Pääbo,et al.  Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. C. Nesbitt,et al.  fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. , 2000, Science.

[48]  A. Templeton,et al.  A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping or DNA sequencing. V. Analysis of case/control sampling designs: Alzheimer's disease and the apoprotein E locus. , 1995, Genetics.

[49]  S. Muse,et al.  Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. , 1997, Genetics.

[50]  B. Burr,et al.  Gene mapping with recombinant inbreds in maize. , 1988, Genetics.

[51]  Pardis C Sabeti,et al.  Linkage disequilibrium in the human genome , 2001, Nature.

[52]  A. Kawabe,et al.  DNA polymorphism at the cytosolic phosphoglucose isomerase (PgiC) locus of the wild plant Arabidopsis thaliana. , 2000, Genetics.

[53]  P. Donnelly,et al.  Association mapping in structured populations. , 2000, American journal of human genetics.

[54]  M. Yano,et al.  Genetic and molecular dissection of naturally occurring variation. , 2001, Current opinion in plant biology.

[55]  Edward S. Buckler,et al.  Dwarf8 polymorphisms associate with variation in flowering time , 2001, Nature Genetics.

[56]  Douglas E. Soltis,et al.  Molecular Systematics of Plants , 1992, Springer US.

[57]  D. Charlesworth,et al.  DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. , 1999, Genetics.

[58]  R. Williams,et al.  Gm3;5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. , 1988, American journal of human genetics.

[59]  D. Reich,et al.  Detecting association in a case‐control study while correcting for population stratification , 2001, Genetic epidemiology.

[60]  A. Peeters,et al.  A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2 , 2001, Nature Genetics.

[61]  R. Terauchi,et al.  Intra- and interspecific variation of the alcohol dehydrogenase locus region in wild plants Arabis gemmifera and Arabidopsis thaliana. , 1996, Molecular biology and evolution.

[62]  W. Stephan,et al.  DNA polymorphism in lycopersicon and crossing-over per physical length. , 1998, Genetics.

[63]  A. Paterson,et al.  Molecular dissection of quantitative traits: progress and prospects. , 1995, Genome research.

[64]  B. Gaut,et al.  Molecular evolution of the Adh1 locus in the genus Zea. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. M. Saunders,et al.  Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease , 1994, Nature Genetics.

[66]  R. Amasino,et al.  Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. , 2000, Science.