Equation-Free Detection and Continuation of a Hopf Bifurcation Point in a Particle Model of Pedestrian Flow

Using an equation-free analysis approach we identify a Hopf bifurcation point and perform a two-parameter continuation of the Hopf point for the macroscopic dynamical behavior of an interacting particle model. Due to the nature of systems with a moderate number of particles and noise, the quality of the available numerical information requires the use of very robust numerical algorithms for each of the building blocks of the equation-free methodology. As an example, we consider a particle model of a crowd of pedestrians where particles interact through pairwise “social forces.” The pedestrians move along a corridor where they are constrained by the walls of the corridor, and two crowds are aiming, from opposite directions, to pass through a narrowing doorway perpendicular to the corridor. We focus our investigation on the collective behavior of the model. As the width of the doorway is increased, we observe an onset of oscillations of the net pedestrian flux through the doorway, described by a Hopf bifurc...

[1]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[3]  H. Haken,et al.  Synergetics , 1988, IEEE Circuits and Devices Magazine.

[4]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[5]  Luca Bruno,et al.  Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications , 2010, 1003.3891.

[6]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[7]  Dirk Helbing,et al.  How simple rules determine pedestrian behavior and crowd disasters , 2011, Proceedings of the National Academy of Sciences.

[8]  Dirk Helbing,et al.  Inefficient emergent oscillations in intersecting driven many-particle flows , 2006 .

[9]  Gerd Zschaler,et al.  Adaptive-network models of swarm dynamics , 2010, 1009.2349.

[10]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[11]  S. Nakata,et al.  Mode bifurcation by pouring water into a cup , 2003 .

[12]  Krzysztof Kulakowski,et al.  Crowd dynamics - being stuck , 2011, Comput. Phys. Commun..

[13]  Dirk Helbing,et al.  Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Dirk Helbing,et al.  Modelling the evolution of human trail systems , 1997, Nature.

[15]  Michael Schreckenberg,et al.  Characterizing correlations of flow oscillations at bottlenecks , 2006, ArXiv.

[16]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[17]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[18]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[19]  Péter Molnár,et al.  Control of distributed autonomous robotic systems using principles of pattern formation in nature and pedestrian behavior , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[20]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[21]  P. Markowich,et al.  On the Hughes' model for pedestrian flow: The one-dimensional case , 2011 .

[22]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[23]  Joceline Lega,et al.  Collective Behaviors in Two-Dimensional Systems of Interacting Particles , 2011, SIAM J. Appl. Dyn. Syst..

[24]  Andrew J. Bernoff,et al.  A Primer of Swarm Equilibria , 2010, SIAM J. Appl. Dyn. Syst..

[25]  K. Yoshikawa,et al.  Plastic bottle oscillator: Rhythmicity and mode bifurcation of fluid flow , 2007 .

[26]  Nicola Bellomo,et al.  On the Modeling of Traffic and Crowds: A Survey of Models, Speculations, and Perspectives , 2011, SIAM Rev..

[27]  Kenichi Yoshikawa,et al.  Synchronization of Three Coupled Plastic Bottle Oscillators , 2009, Int. J. Unconv. Comput..

[28]  William H. Press,et al.  Numerical recipes in C , 2002 .

[29]  K. Steinmüller HAKEN, H.: Synergetics. An Introduction. Springer‐Verlag, Berlin‐Heidelberg‐New York 1977. XII, 325 S., 125 Abb., DM 72.—. , 1978 .

[30]  S. Nakata,et al.  Mode-bifurcation upon pouring water into a cup that depends on the shape of the cup , 2005 .

[31]  Giovanni Samaey,et al.  Equation-free multiscale computation: algorithms and applications. , 2009, Annual review of physical chemistry.

[32]  Sébastien Paris,et al.  Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach , 2007, Comput. Graph. Forum.

[33]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[34]  Michel Bierlaire,et al.  Discrete Choice Models for Pedestrian Walking Behavior , 2006 .

[35]  I. Kevrekidis,et al.  "Coarse" stability and bifurcation analysis using time-steppers: a reaction-diffusion example. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[37]  C. W. Gear,et al.  'Coarse' integration/bifurcation analysis via microscopic simulators: Micro-Galerkin methods , 2002 .

[38]  Giovanni Samaey,et al.  Equation-free modeling , 2010, Scholarpedia.

[39]  C. W. Gear,et al.  Equation-Free, Coarse-Grained Multiscale Computation: Enabling Mocroscopic Simulators to Perform System-Level Analysis , 2003 .

[40]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.