Combinatorial rule explosion eliminated by a fuzzy rule configuration

Conventional fuzzy inference methodology relates the relevant subsets of each input universal set to the subsets of the other system inputs through an intersection-rule configuration. This strategy yields an exponential growth in the number of rules as inputs are added to the system, quickly reducing performance to unacceptable levels. A novel rule configuration and matrix design are presented in this paper that do not rely on rule multiplication to insure that antecedent elements are effectively related to their consequent counterparts. This alternative formulation models the entire system problem space with a simplified structure that increases linearly as the inference engine grows, providing significant computational savings to a broad range of commercial and scientific applications.