RBF-FD solution for a financial partial-integro differential equation utilizing the generalized multiquadric function

Abstract This work concerns the weights of the radial basis function generated finite difference (RBF-FD) formulas for estimation of the first and second derivatives of an unknown function applying the generalized multiquadric function (GMQ). Several discussions about their error equations on structured and unstructured grids of points are worked out. Next, the formulas are applied on a new non-uniform mesh of points based on modified Legendre polynomial zeros in order to computationally solve a (1+2) dimensional partial integro-differential equation (PIDE) arising in the model of stochastic volatility with contemporaneous jumps (SVCJ). Numerical results show a fast convergence for solving this problem.

[1]  Natasha Flyer,et al.  A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0) , 2015 .

[2]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[3]  Y. C. Hon,et al.  A quasi-radial basis functions method for American options pricing , 2002 .

[4]  Hai-Wei Sun,et al.  Fast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models , 2014 .

[5]  Andrey Itkin,et al.  Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models , 2010 .

[6]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[7]  Luca Vincenzo Ballestra,et al.  Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions , 2011 .

[8]  Jae-Hun Jung,et al.  An iterative adaptive multiquadric radial basis function method for the detection of local jump discontinuities , 2009 .

[9]  Abdul-Qayyum M. Khaliq,et al.  Efficient Krylov-based exponential time differencing method in application to 3D advection-diffusion-reaction systems , 2018, Appl. Math. Comput..

[10]  G. Griffiths Numerical Analysis Using R: Solutions to ODEs and PDEs , 2016 .

[11]  Kyong-Hui Kim,et al.  Efficient hedging in general Black-Scholes model , 2013, 1308.6387.

[12]  Evan F. Bollig,et al.  Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs , 2012, J. Comput. Phys..

[13]  Bengt Fornberg,et al.  Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..

[14]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[15]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[16]  Emil Catinas,et al.  A survey on the high convergence orders and computational convergence orders of sequences , 2019, Appl. Math. Comput..

[17]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[18]  Scott A. Sarra,et al.  A Numerical Study of Generalized Multiquadric Ra dial Basis Function Interpolation , 2009 .

[19]  S. R. Searle,et al.  On the history of the kronecker product , 1983 .

[20]  Jichun Li,et al.  Simulating backward wave propagation in metamaterial with radial basis functions , 2019, Results in Applied Mathematics.

[21]  Jae-Hun Jung,et al.  A note on the Gibbs phenomenon with multiquadric radial basis functions , 2007 .

[22]  John R. Rice,et al.  Tensor product analysis of partial difference equations , 1964 .

[23]  Mayya Tokman,et al.  Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs , 2013, J. Comput. Appl. Math..

[24]  Manuel Kindelan,et al.  RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..

[25]  Y. Saad Preconditioning techniques for nonsymmetric and indefinite linear systems , 1988 .

[26]  C. S. Chen,et al.  On the use of boundary conditions for variational formulations arising in financial mathematics , 2001, Appl. Math. Comput..

[27]  Lina von Sydow,et al.  Radial Basis Function generated Finite Differences for option pricing problems , 2017, Comput. Math. Appl..

[28]  F. Soleymani,et al.  A multiquadric RBF–FD scheme for simulating the financial HHW equation utilizing exponential integrator , 2018, Calcolo.

[29]  SANTTU SALMI,et al.  An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps , 2014, SIAM J. Sci. Comput..

[30]  M. A. McCarthy,et al.  A local Heaviside weighted meshless method for two-dimensional solids using radial basis functions , 2003 .

[31]  A. Ostermann,et al.  Comparison of software for computing the action of the matrix exponential , 2014 .

[32]  E. Kansa,et al.  Numerical simulation of two-dimensional combustion using mesh-free methods , 2009 .

[33]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[34]  Elisabeth Larsson,et al.  Preconditioning for Radial Basis Function Partition of Unity Methods , 2016, J. Sci. Comput..

[35]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[36]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[37]  Luca Vincenzo Ballestra,et al.  A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications , 2012 .

[38]  Lloyd N. Trefethen,et al.  A robust implementation of the Carathéodory-Fejér method for rational approximation , 2011 .

[39]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[40]  Scott A. Sarra,et al.  A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains , 2012, Appl. Math. Comput..

[41]  Michael Trott The Mathematica GuideBook for Numerics , 2005 .

[42]  Feng Ding,et al.  On the Kronecker Products and Their Applications , 2013, J. Appl. Math..