Inflation with two-form field: the production of primordial black holes and gravitational waves

Antisymmetric tensor field (two-form field) is a ubiquitous component in string theory and generally couples to the scalar sector through its kinetic term. In this paper, we propose a cosmological scenario that the particle production of two-form field, which is triggered by the background motion of the coupled inflaton field, occurs at the intermediate stage of inflation and generates the sizable amount of primordial black holes as dark matter after inflation. We also compute the secondary gravitational waves sourced by the curvature perturbation and show that the resultant power spectra are testable with the future space-based laser interferometers.

[1]  A. Ashoorioon,et al.  NANOGrav signal from the end of inflation and the LIGO mass and heavier primordial black holes , 2022, Physics Letters B.

[2]  S. Young Peaks and primordial black holes: the effect of non-Gaussianity , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  G. Domènech Scalar Induced Gravitational Waves Review , 2021, Universe.

[4]  V. Spanos,et al.  Gravitational waves and primordial black holes from supersymmetric hybrid inflation , 2021, Physical Review D.

[5]  Jinsu Kim,et al.  Primordial black holes from Gauss-Bonnet-corrected single field inflation , 2021, Physical Review D.

[6]  Zachary J. Weiner,et al.  Non-Gaussianity and the induced gravitational wave background , 2021, Journal of Cosmology and Astroparticle Physics.

[7]  A. Ashoorioon,et al.  Examining the end of inflation with primordial black hole mass distribution and gravitational waves , 2020, Physical Review D.

[8]  D. Stinebring,et al.  The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.

[9]  Z. Lalak,et al.  Primordial black holes as dark matter and gravitational waves from bumpy axion inflation , 2020, Journal of Cosmology and Astroparticle Physics.

[10]  C. Byrnes,et al.  The power spectrum on small scales: robust constraints and comparing PBH methodologies , 2020, Journal of Cosmology and Astroparticle Physics.

[11]  Tomohiro Fujita,et al.  Chiral gravitational waves produced in a helical magnetogenesis model , 2020, Journal of Cosmology and Astroparticle Physics.

[12]  M. Sasaki,et al.  Induced gravitational waves as a probe of thermal history of the universe , 2020, Journal of Cosmology and Astroparticle Physics.

[13]  T. Slatyer,et al.  INTEGRAL constraints on primordial black holes and particle dark matter , 2020, 2004.00627.

[14]  M. Musso,et al.  Application of peaks theory to the abundance of primordial black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[15]  M. Kawasaki,et al.  Generation of primordial black holes and gravitational waves from dilaton-gauge field dynamics , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  R. Sheth,et al.  Nonlinear statistics of primordial black holes from Gaussian curvature perturbations , 2019, Physical Review D.

[17]  Guillem Domènech Induced gravitational waves in a general cosmological background , 2019, International Journal of Modern Physics D.

[18]  Tristan L. Smith,et al.  LISA for cosmologists: Calculating the signal-to-noise ratio for stochastic and deterministic sources , 2019, Physical Review D.

[19]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[20]  Ranjan Laha Primordial Black Holes as a Dark Matter Candidate Are Severely Constrained by the Galactic Center 511 keV γ-Ray Line. , 2019, Physical review letters.

[21]  P. Graham,et al.  Constraining Primordial Black Hole Abundance with the Galactic 511 keV Line. , 2019, Physical review letters.

[22]  C. Hirata,et al.  Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates , 2019, Journal of Cosmology and Astroparticle Physics.

[23]  S. Young The primordial black hole formation criterion re-examined: Parametrisation, timing and the choice of window function , 2019, International Journal of Modern Physics D.

[24]  C. Byrnes,et al.  Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation , 2019, Journal of Cosmology and Astroparticle Physics.

[25]  C. Unal Imprints of primordial non-Gaussianity on gravitational wave spectrum , 2018, Physical Review D.

[26]  M. Pieroni,et al.  Black hole formation from a general quadratic action for inflationary primordial fluctuations , 2018, Journal of Cosmology and Astroparticle Physics.

[27]  R. Cai,et al.  Gravitational Waves Induced by Non-Gaussian Scalar Perturbations. , 2018, Physical review letters.

[28]  G. Bertone,et al.  A new era in the search for dark matter , 2018, Nature.

[29]  I. Musco Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations , 2018, Physical Review D.

[30]  Tomohiro Fujita,et al.  Footprint of two-form field: Statistical anisotropy in primordial gravitational waves , 2018, Physical Review D.

[31]  A. Katz,et al.  Femtolensing by dark matter revisited , 2018, Journal of Cosmology and Astroparticle Physics.

[32]  K. Kohri,et al.  Semianalytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations , 2018, Physical Review D.

[33]  J. Espinosa,et al.  A cosmological signature of the SM Higgs instability: gravitational waves , 2018, Journal of Cosmology and Astroparticle Physics.

[34]  G. Tasinato,et al.  Mechanisms for primordial black hole production in string theory , 2018, Journal of Cosmology and Astroparticle Physics.

[35]  M. Kawasaki,et al.  Primordial black holes and uncertainties in the choice of the window function , 2018, Physical Review D.

[36]  K. Ng,et al.  Primordial black holes and associated gravitational waves in axion monodromy inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[37]  Takahiro Tanaka,et al.  Statistically anisotropic tensor modes from inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[38]  T. Yanagida,et al.  Primordial black holes for the LIGO events in the axionlike curvaton model , 2017, Physical Review D.

[39]  V. Poulin,et al.  CMB bounds on disk-accreting massive primordial black holes , 2017, 1707.04206.

[40]  J. García-Bellido,et al.  Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter , 2017, 1707.02441.

[41]  L. Witkowski,et al.  PBH dark matter from axion inflation , 2017, 1704.03464.

[42]  R. Lupton,et al.  Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations , 2017, Nature Astronomy.

[43]  J. Silk,et al.  Stochastic gravitational waves associated with the formation of primordial black holes , 2016, 1612.06264.

[44]  T. Yanagida,et al.  Inflationary primordial black holes for the LIGO gravitational wave events and pulsar timing array experiments , 2016, 1611.06130.

[45]  J. García-Bellido,et al.  Gravitational waves at interferometer scales and primordial black holes in axion inflation , 2016, 1610.03763.

[46]  K. Ng,et al.  Production of high stellar-mass primordial black holes in trapped inflation , 2016, 1606.00206.

[47]  Takahiro Tanaka,et al.  Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914. , 2016, Physical review letters.

[48]  J. Garc'ia-Bellido,et al.  The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO , 2016, 1603.05234.

[49]  P. Bin'etruy,et al.  Primordial gravitational waves for universality classes of pseudoscalar inflation , 2016, 1603.01287.

[50]  A. Riess,et al.  Did LIGO Detect Dark Matter? , 2016, Physical review letters.

[51]  D. Regan,et al.  Influence of large local and non-local bispectra on primordial black hole abundance , 2015, 1512.07224.

[52]  J. Soda,et al.  Designing Anisotropic Inflation with Form Fields , 2015, 1506.02450.

[53]  P. Graham,et al.  Dark Matter Triggers of Supernovae , 2015, 1505.04444.

[54]  C. Byrnes,et al.  Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter , 2015, 1503.01505.

[55]  C. Byrnes,et al.  Long-short wavelength mode coupling tightens primordial black hole constraints , 2014, 1411.4620.

[56]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[57]  M. Pshirkov,et al.  Adiabatic contraction revisited: implications for primordial black holes , 2014, 1403.7098.

[58]  J. Ellis,et al.  Starobinsky-like inflation in dilaton-brane cosmology , 2014, 1402.5075.

[59]  A. Loeb,et al.  Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter , 2014, 1401.3025.

[60]  E. Bugaev,et al.  Axion inflation with gauge field production and primordial black holes , 2013, 1312.7435.

[61]  S. Tsujikawa,et al.  Observational signatures of anisotropic inflationary models , 2013, 1308.4488.

[62]  C. Byrnes,et al.  Primordial black holes in non-Gaussian regimes , 2013, 1307.4995.

[63]  S. Tsujikawa,et al.  Anisotropic non-Gaussianity from a two-form field , 2013, 1303.7340.

[64]  E. Bugaev,et al.  PRIMORDIAL BLACK HOLE CONSTRAINTS FOR CURVATON MODELS WITH PREDICTED LARGE NON-GAUSSIANITY , 2013, 1303.3146.

[65]  M. Pshirkov,et al.  Constraints on primordial black holes as dark matter candidates from capture by neutron stars , 2013, 1301.4984.

[66]  Andrei Linde,et al.  Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes , 2012, 1212.1693.

[67]  S. Shandera,et al.  Number counts and non-Gaussianity , 2012, 1211.7361.

[68]  M. Pshirkov,et al.  Constraints on primordial black holes as dark matter candidates from star formation , 2012, 1209.6021.

[69]  E. Copeland,et al.  Primordial black holes as a tool for constraining non-Gaussianity , 2012, 1206.4188.

[70]  K. Ng,et al.  Primordial black holes from passive density fluctuations , 2012, 1206.1685.

[71]  A. Barnacka,et al.  New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts , 2012, 1204.2056.

[72]  D. Lyth The hybrid inflation waterfall and the primordial curvature perturbation , 2012, 1201.4312.

[73]  J. Miller,et al.  Primordial black hole formation in the early universe: critical behaviour and self-similarity , 2012, 1201.2379.

[74]  E. Bugaev,et al.  Formation of primordial black holes from non-Gaussian perturbations produced in a waterfall transition , 2011, 1112.5601.

[75]  R. Poleski,et al.  The OGLE view of microlensing towards the Magellanic Clouds – IV. OGLE-III SMC data and final conclusions on MACHOs , 2011, 1106.2925.

[76]  M. Drees,et al.  Running-Mass Inflation Model and Primordial Black Holes , 2011, 1102.2340.

[77]  J. Yokoyama,et al.  Gravitational-wave constraints on abundance of primordial black holes , 2010 .

[78]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[79]  E. Nestler,et al.  Erratum , 2009 .

[80]  J. Yokoyama,et al.  Gravitational-wave background as a probe of the primordial black-hole abundance. , 2008, Physical review letters.

[81]  A. Polnarev,et al.  Primordial black hole formation in the radiative era: investigation of the critical nature of the collapse , 2008, 0811.1452.

[82]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[83]  J. Beaulieu,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[84]  P. Avelino Primordial black hole abundance in non-Gaussian inflation models , 2005, astro-ph/0510052.

[85]  A. Tomaney,et al.  MACHO Project Limits on Black Hole Dark Matter in the 1-30 M☉ Range , 2000, astro-ph/0011506.

[86]  E. Copeland,et al.  Superstring Cosmology , 1999, hep-th/9909061.

[87]  P. Ivanov Nonlinear metric perturbations and production of primordial black holes , 1997, astro-ph/9708224.

[88]  J. Bullock,et al.  Non-Gaussian fluctuations and primordial black holes from inflation , 1996, astro-ph/9611106.

[89]  J. García-Bellido,et al.  Density perturbations and black hole formation in hybrid inflation. , 1996, Physical review. D, Particles and fields.

[90]  A. Polyakov,et al.  The string dilation and a least coupling principle , 1994, hep-th/9401069.

[91]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[92]  B. Carr The Primordial black hole mass spectrum , 1975 .

[93]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[94]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[95]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[96]  A. Hebecker,et al.  Axions in String Theory , 2022 .

[97]  ournal of C osmology and A stroparticle hysics J Calculating the mass fraction of primordial black holes , 2022 .