J004457+4123 (Sharov 21): not a remarkable nova in M 31 but a background quasar with a spectacular UV flare

Aims. We announce the discovery of a quasar behind the disk of M 31, which was previously classified as a remarkable nova in our neighbour galaxy. It is shown here to be a quasar with a single strong flare where the UV flux has increased by a factor of ∼20. The present paper is primarily aimed at the remarkable outburst of J004457+4123 (Sharov 21), with the first part focussed on the optical spectroscopy and the improvement in the photometric database. Methods. We exploited the archives of photographic plates and CCD observations from 15 wide-field telescopes and performed targetted new observations. In the second part, we try to fit the flare by models of (1) gravitational microlensing due to a star in M 31 and (2) a tidal disruption event (TDE) of a star close to the supermassive black hole of the quasar. Results. Both the optical spectrum and the broad band spectral energy distribution of Sharov 21 are shown to be very similar to that of normal, radio-quiet type 1 quasars. We present photometric data covering more than a century and resulting in a long-term light curve that is densely sampled over the past five decades. The variability of the quasar is characterized by a ground state with typical fluctuation amplitudes of ∼0.2 mag around ¯ B ∼ 20.5, superimposed by a singular flare of ∼2 yr duration (observer frame) with the maximum at 1992.81. The total energy in the flare is at least three orders of magnitudes higher than the radiated energy of the most luminous supernovae, provided that it comes from an intrinsic process and the energy is radiated isotropically. The profile of the flare light curve is asymmetric showing in particular a sudden increase before the maximum, whereas the decreasing part can be roughly ¯

[1]  M. R. S. Hawkins,et al.  Gravitational microlensing, quasar variability and missing matter , 1993, Nature.

[2]  U. Tsukuba,et al.  Nuclear/Circumnuclear Starbursts and Active Galactic Nucleus Mass Accretion in Seyfert Galaxies , 2007, 0712.4313.

[3]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[4]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[5]  D. Merritt,et al.  The M•-σ Relation for Supermassive Black Holes , 2000, astro-ph/0008310.

[6]  A. Sillanpää,et al.  OJ 287 - Binary pair of supermassive black holes , 1988 .

[7]  R. Nichol,et al.  The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0310336.

[8]  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[9]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004 .

[10]  Kristen Menou,et al.  The Giant X-Ray Flare of NGC 5905: Tidal Disruption of a Star, a Brown Dwarf, or a Planet? , 2002, astro-ph/0203191.

[11]  P. Andreani,et al.  Star Formation in the Hosts of High-z QSOs: Evidence from Spitzer PAH Detections , 2008, 0805.2669.

[12]  E. O. Ofek,et al.  SN 2006gy: An Extremely Luminous Supernova in the Galaxy NGC 1260 , 2006 .

[13]  B. Milliard,et al.  Accepted for Publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 UV/OPTICAL DETECTIONS OF CANDIDATE TIDAL DISRUPTION EVENTS BY GALEX AND CFHTLS 1 , 2022 .

[14]  M. R. S. Hawkins,et al.  The quasar luminosity function from a variability-selected sample , 1993 .

[15]  E. Quataert,et al.  Optical Flares from the Tidal Disruption of Stars by Massive Black Holes , 2009, Proceedings of the International Astronomical Union.

[16]  NEW QUASARS DETECTED VIA VARIABILITY IN THE QUEST1 SURVEY , 2003, astro-ph/0310916.

[17]  A RELATION BETWEEN SUPERMASSIVE BLACK HOLE MASS AND QUASAR METALLICITY , 2003, astro-ph/0307247.

[18]  Suvrath Mahadevan,et al.  Tidal Disruption of a Star by a Black Hole: Observational Signature , 2004 .

[19]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[20]  R. Kron,et al.  STARS WITH ZERO PRPER MOTION AND THE NUMBER OF FAINT QSOS. , 1981 .

[21]  B. Garilli,et al.  Eddington ratios of faint AGN at intermediate redshift: evidence for a population of half-starved black holes , 2008, 0810.2172.

[22]  R. Genzel,et al.  A Close Look at Star Formation around Active Galactic Nuclei , 2007, 0704.1374.

[23]  Looking at quasars through galaxies , 2005, astro-ph/0509904.

[24]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[25]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[26]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[27]  HE 0047-1756: A new gravitationally lensed double QSO , 2004, astro-ph/0403475.

[28]  Annette Ferguson,et al.  Evidence for Stellar Substructure in the Halo and Outer Disk of M31 , 2002, astro-ph/0205530.

[29]  M. Irwin,et al.  The statistics of microlensing light curves — II. Temporal analysis , 1996 .

[30]  D. Kasen,et al.  THREE-DIMENSIONAL SIMULATIONS OF TIDALLY DISRUPTED SOLAR-TYPE STARS AND THE OBSERVATIONAL SIGNATURES OF SHOCK BREAKOUT , 2008, 0811.1370.

[31]  J. P. Huchra,et al.  M31 Globular Clusters: Colors and Metallicities* ** *** , 2000 .

[32]  S. Komossa,et al.  Tidal Disruption Flares from Recoiling Supermassive Black Holes , 2008, 0807.0223.

[33]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[34]  Sheffield,et al.  Reddening, colour and metallicity of the M31 globular cluster system , 2007, 0711.4855.

[35]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[36]  Luis C. Ho,et al.  Contribution of Stellar Tidal Disruptions to the X-Ray Luminosity Function of Active Galaxies , 2006, astro-ph/0602289.

[37]  David Burstein,et al.  An ultraviolet flare at the centre of the elliptical galaxy NGC4552 , 1995, Nature.

[38]  E. al.,et al.  Composite Quasar Spectra from the Sloan Digital Sky Survey , 2001, astro-ph/0105231.

[39]  M. Salvato,et al.  A candidate tidal disruption event in the Galaxy cluster Abell 3571 , 2009, 0901.3357.

[40]  T. Lazio,et al.  A Wide-Field, Low-Frequency Radio Image of the Field of M31. II. Source Classification and Discussion , 2005, astro-ph/0506491.

[41]  Gopal-Krishna,et al.  Stellar Disruption by Supermassive Black Holes and the Quasar Radio Loudness Dichotomy , 2008, The Astrophysical Journal.

[42]  P. N. Wilkinson,et al.  A survey of polarization in the JVAS/CLASS flat-spectrum radio source surveys – I. The data and catalogue production , 2007, astro-ph/0703273.

[43]  T. Marquart,et al.  Can microlensing explain the long-term optical variability of quasars? , 2003, astro-ph/0306434.

[44]  Eugene Serabyn,et al.  Massive Stars in the Arches Cluster , 2002, astro-ph/0208145.

[45]  P. Jakobsson,et al.  Microlensing variability in time-delay quasars , 2006, astro-ph/0607133.

[46]  T. Paumard,et al.  The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation , 2006, astro-ph/0601268.

[47]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[48]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[49]  F. Haberl,et al.  An XMM-Newton survey of M 31 , 2004 .

[50]  A. Sandage The Hubble atlas of galaxies , 1961 .

[51]  M. Rees "Dead Quasars" in Nearby Galaxies? , 1990, Science.

[52]  J. L. Donley,et al.  Accepted for publication in The Astronomical Journal Large-Amplitude X-ray Outbursts from Galactic Nuclei: A Systematic Survey Using ROSAT Archival Data , 2002 .

[53]  J. Magorrian,et al.  Tidal Disruption of Stellar Objects by Hard Supermassive Black Hole Binaries , 2007, 0712.0246.

[54]  Royal Greenwich Observatory,et al.  PATTERNS AND COINCIDENCES IN THE LIGHT CURVES OF ACTIVE GALAXIES , 1997, astro-ph/9706241.

[55]  M. Livio,et al.  Tidal Disruption of a Solar-Type Star by a Supermassive Black Hole , 2000, astro-ph/0002499.

[56]  M. Aller,et al.  Extraordinary Activity in the BL Lacertae Object OJ 287 , 1998, astro-ph/9802275.

[57]  E. Hubble,et al.  No. 376. A spiral nebula as a stellar system. Messier 31. , 1929 .

[58]  Roger W. Romani,et al.  A Northern Survey of Gamma-Ray Blazar Candidates , 2005, astro-ph/0503115.

[59]  P. Richter,et al.  Origin of Chromatic Features in Multiple Quasars Variability, Dust, or Microlensing , 2007, 0709.1527.

[60]  Oxford,et al.  Emission linewidths and QSO black hole mass estimates from the 2dF QSO Redshift Survey , 2003, astro-ph/0304541.

[61]  Alfred Krabbe,et al.  A cluster of He I emission-line stars in the Galactic center , 1991 .

[62]  Determining central black hole masses in distant active galaxies , 2002, astro-ph/0204106.

[63]  R. Cannon,et al.  Optical Monitoring of Radio Sources — II: The N-type and Seyfert Galaxies , 1971 .

[64]  A. Loeb,et al.  Dynamical constraints on the Local Group from the CMB and 2MRS dipoles , 2007, 0711.3809.

[65]  D. J. Helfand,et al.  THE FIRST BRIGHT QUASAR SURVEY. II. 60 NIGHTS AND 1200 SPECTRA LATER , 1998 .

[66]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[67]  M. F. Physik,et al.  A systematic search for novae in M 31 on a large set of digitized archival Schmidt plates , 2007, 0710.1194.

[68]  R. Cannon,et al.  3C390.3, a Second Variable N-Galaxy , 1968, Nature.

[69]  COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses - II. SDSS J0924+0219: the redshift of the lensing galaxy, the quasar spectral variability and the Einstein rings , 2005, astro-ph/0510641.

[70]  M. Vestergaard Early Growth and Efficient Accretion of Massive Black Holes at High Redshift , 2003, astro-ph/0309521.

[71]  G. Hasinger,et al.  Candidate tidal disruption events from the XMM-Newton slew survey , 2006, astro-ph/0612340.

[72]  Harlow Shapley,et al.  Reference catalogue of bright galaxies , 1964 .

[73]  J. Kollmeier,et al.  An Improved Method for Using Mg II to Estimate Black Hole Masses in Active Galactic Nuclei , 2008, 0810.1950.

[74]  X. Chen,et al.  Evolution of Supermassive Black Hole Binaries and Acceleration of Jet Precession in Galactic Nuclei , 2007, 0705.1077.

[75]  G. Rieke,et al.  Variability and the nature of QSO optical-infrared continua , 1985 .

[76]  G. Sala,et al.  Optical novae: the major class of supersoft X-ray sources in M 31 , 2005, astro-ph/0504321.

[77]  Annette Ferguson,et al.  A Minor-Axis Surface Brightness Profile for M31 , 2005, astro-ph/0505077.

[78]  R. C. Smith,et al.  A Survey of Local Group Galaxies Currently Forming Stars. I. UBVRI Photometry of Stars in M31 and M33 , 2006, astro-ph/0602128.

[79]  Rene Racine,et al.  Globular clusters in the halo of M31 , 1991 .

[80]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[81]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[82]  M. Aller,et al.  Extraordinary Activity in the BL Lac Object OJ 287 , 1999 .

[83]  I. Igumenshchev,et al.  Rotating accretion flows around black holes: convection and variability , 1999 .

[84]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[85]  A. M. Read,et al.  The second ROSAT PSPC survey of M 31 and the complete ROSAT PSPC source list , 2001 .

[86]  R. Weymann,et al.  The radio properties of the broad-absorption-line QSOs , 1984 .

[87]  M. Dietrich,et al.  The black hole-bulge relationship in QSOS , 2002, astro-ph/0210050.

[88]  P. B. Ivanov,et al.  A New Model of a Tidally Disrupted Star , 2000 .

[89]  R. Taam,et al.  The evolution of the inner regions of viscous accretion disks surrounding neutron stars , 1984 .

[90]  J. Brinkmann,et al.  Spectral Variability of Quasars in the Sloan Digital Sky Survey , 2004, astro-ph/0504309.

[91]  Philippe Veron,et al.  A catalogue of quasars and active nuclei: 12th edition , 1998 .

[92]  R Edelson,et al.  Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability , 1990 .

[93]  Bohdan Paczynski,et al.  Gravitational Microlensing at Large Optical Depth , 1986 .

[94]  Eric W. Deutsch,et al.  CC BOOTIS: QSO, NOT VARIABLE HALO GIANT , 1997 .

[95]  Investigating the Andromeda stream — I. Simple analytic bulge—disc—halo model for M31 , 2005, astro-ph/0501240.

[96]  C. J. Clarke,et al.  Star–disc interactions near a massive black hole , 1991 .

[97]  H. Lehto,et al.  OJ 287 Outburst Structure and a Binary Black Hole Model , 1996 .

[98]  M. Irwin,et al.  Photometric variations in the Q2237 + 0305 system - First detection of a microlensing event , 1989 .

[99]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[100]  David Schade,et al.  The Space Distribution of Quasars , 1990 .

[101]  D. Froebrich,et al.  A search for LSB dwarf galaxies in the M 81 group on digitally stacked Schmidt plates , 2000 .

[102]  Eugene Serabyn,et al.  THE GALACTIC CENTER ENVIRONMENT , 1996 .

[103]  D. Sluse,et al.  Multi-wavelength study of the gravitational lens system RXS J1131-1231 III. Long slit spectroscopy: micro-lensing probes the QSO structure ⋆ , 2007, astro-ph/0703030.

[104]  Blair D. Savage,et al.  Observed Properties of Interstellar Dust , 1979 .

[105]  E. Agol,et al.  Chandra Observations of the Cloverleaf Quasar H1413+117: A Unique Laboratory for Microlensing Studies of a LoBAL Quasar , 2004, astro-ph/0401240.

[106]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[107]  T. Paumard,et al.  AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS , 2009, 0908.2177.

[108]  R. D. Saxton,et al.  Evolution of tidal disruption candidates discovered by XMM-Newton , 2008, 0807.4452.

[109]  J. Hills Possible power source of Seyfert galaxies and QSOs , 1975, Nature.

[110]  M. Irwin,et al.  QSOs from the variability and proper motion survey in the M 3 field , 2002, astro-ph/0207486.

[111]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[112]  R. Braun The interstellar medium of M31. II : A survey of 20 centimeter continuum emission , 1990 .

[113]  R. Kron,et al.  Continuum Variability of Active Galactic Nuclei in the Optical-Ultraviolet Range , 2000, astro-ph/0012408.

[114]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[115]  S. Djorgovski,et al.  HIGHLY VARIABLE OBJECTS IN THE PALOMAR-QUEST SURVEY: A BLAZAR SEARCH USING OPTICAL VARIABILITY , 2009, 0909.0014.

[116]  A massive binary black-hole system in OJ 287 and a test of general relativity , 2008, Nature.

[117]  David Merritt,et al.  REVISED RATES OF STELLAR DISRUPTION IN GALACTIC NUCLEI , 2004 .

[118]  J. Wambsganss,et al.  Expected color variations of the gravitationally microlensed QSO 2237 + 0305 , 1991 .

[119]  Ryan Chornock,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[120]  Linhua Jiang,et al.  COSMIC EVOLUTION OF STAR FORMATION IN TYPE-1 QUASAR HOSTS SINCE z = 1 , 2009, 0908.0952.

[121]  V. Belokurov,et al.  Light and motion in SDSS Stripe 82: The catalogues , 2008, 0801.4894.

[122]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[123]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[124]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[125]  J. Katz,et al.  A Precessing Disk in OJ 287? , 1997 .

[126]  S. Mineshige,et al.  Optical Variability in Active Galactic Nuclei: Starbursts or Disk Instabilities? , 1997, astro-ph/9712006.

[127]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[128]  Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole , 2006, astro-ph/0612069.

[129]  K. Jahnke,et al.  Integral-field spectrophotometry of the quadruple QSO HE 0435 1223: Evidence for microlensing , 2003, astro-ph/0307147.

[130]  M. Dopita,et al.  NTT, SPITZER, AND CHANDRA SPECTROSCOPY OF SDSSJ095209.56+214313.3: THE MOST LUMINOUS CORONAL-LINE SUPERNOVA EVER OBSERVED, OR A STELLAR TIDAL DISRUPTION EVENT? , 2009, 0902.3248.

[131]  H. Meusinger,et al.  The galaxy cluster Abell 426 (Perseus). A catalogue of 660 galaxy positions, isophotal magnitudes and morphological types , 1999 .

[132]  Charles H. Townes,et al.  The nature of the central parsec of the Galaxy , 1982 .

[133]  Variability of Active Galactic Nuclei from the Optical to X-ray Regions , 2003, 0907.1415.

[134]  E. Quataert,et al.  Activity From Tidal Disruptions in Galactic Nuclei , 2001, astro-ph/0110145.

[135]  I. Ribas,et al.  Eclipsing binaries suitable for distance determination in the Andromeda galaxy , 2006, astro-ph/0607236.

[136]  Stellar and wind properties of massive stars in the central parsec of the Galaxy , 2006, Proceedings of the International Astronomical Union.

[137]  J. Ostriker,et al.  The statistics of gravitational lenses - Appaarent changes in the luminosity function of distant sources due to passage of light through a single galaxy , 1983 .

[138]  K. Wada,et al.  Coevolution of Supermassive Black Holes and Circumnuclear Disks , 2008, 0803.2271.

[139]  T. Lazio,et al.  A Wide-Field, Low-Frequency Radio Survey of the Field of M31. I. Construction and Statistical Analysis of the Source Catalog , 2004, astro-ph/0405556.

[140]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[141]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[142]  R. Terlevich,et al.  The starburst model for active galactic nuclei : the broad-line region as supernova remnants evolving in a high-density medium , 1992 .

[143]  D. S. Heeschen,et al.  Flicker of extragalactic radio sources at two frequencies , 1984 .