Integrating CRISPR-Cas12a with a DNA circuit as a generic sensing platform for amplified detection of microRNA† †Electronic supplementary information (ESI) available. See DOI: 10.1039/d0sc03084h

A generic sensing strategy that integrates CRISPR-Cas12a with a DNA circuit is proposed for amplified detection of microRNA.

[1]  Yu Cao,et al.  Sensitively distinguishing intracellular precursor and mature microRNA abundance† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03305f , 2018, Chemical science.

[2]  Thomas Thum,et al.  MicroRNA-21: from cancer to cardiovascular disease. , 2010, Current drug targets.

[3]  Jennifer A. Doudna,et al.  Programmed DNA destruction by miniature CRISPR-Cas14 enzymes , 2018, Science.

[4]  Aviv Regev,et al.  RNA targeting with CRISPR–Cas13 , 2017, Nature.

[5]  Bingling Li,et al.  Mismatches improve the performance of strand-displacement nucleic Acid circuits. , 2014, Angewandte Chemie.

[6]  Ningning Li,et al.  The crystal structure of Cpf1 in complex with CRISPR RNA , 2016, Nature.

[7]  N. Kotov,et al.  Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies , 2019, Proceedings of the National Academy of Sciences.

[8]  Andrew D. Ellington,et al.  Diagnostic Applications of Nucleic Acid Circuits , 2014, Accounts of chemical research.

[9]  Jibin Abraham Punnoose,et al.  DNA nanotechnology approaches for microRNA detection and diagnosis , 2019, Nucleic acids research.

[10]  Yulia V Gerasimova,et al.  Enzyme-assisted target recycling (EATR) for nucleic acid detection. , 2014, Chemical Society reviews.

[11]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[12]  Jian-hui Jiang,et al.  Ultrasensitive detection of microRNAs using catalytic hairpin assembly coupled with enzymatic repairing amplification. , 2016, Chemical communications.

[13]  Richard Bruch,et al.  CRISPR/Cas13a‐Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification‐Free miRNA Diagnostics , 2019, Advanced materials.

[14]  Shuomin Zhu,et al.  miR-21-mediated tumor growth , 2007, Oncogene.

[15]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[16]  E. Rooij,et al.  The Art of MicroRNA Research , 2011 .

[17]  Qiu-Xiang Cheng,et al.  CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA , 2018, Cell Research.

[18]  C. Mao,et al.  Capturing intracellular oncogenic microRNAs with self-assembled DNA nanostructures for microRNA-based cancer therapy† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc03039a , 2018, Chemical science.

[19]  D. C. Swarts,et al.  Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. , 2017, Molecular cell.

[20]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[21]  Da Xing,et al.  High-Fidelity and Rapid Quantification of miRNA Combining crRNA Programmability and CRISPR/Cas13a trans-Cleavage Activity. , 2019, Analytical chemistry.

[22]  James J. Collins,et al.  Programmable CRISPR-responsive smart materials , 2019, Science.

[23]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[24]  Chunhai Fan,et al.  Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. , 2013, Journal of the American Chemical Society.

[25]  Jennifer A. Doudna,et al.  CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity , 2018, Science.

[26]  R. Yuan,et al.  Ultrasensitive photoelectrochemical biosensor for MiRNA-21 assay based on target-catalyzed hairpin assembly coupled with distance-controllable multiple signal amplification. , 2019, Chemical communications.

[27]  C. Liu,et al.  Exploring the Trans-Cleavage Activity of CRISPR Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. , 2019, Angewandte Chemie.

[28]  Eugene V Koonin,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[29]  Huangxian Ju,et al.  MicroRNA: function, detection, and bioanalysis. , 2013, Chemical reviews.

[30]  Sai Bi,et al.  Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. , 2017, Chemical Society reviews.

[31]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[32]  Eric S. Lander,et al.  C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector , 2016, Science.

[33]  X. Qu,et al.  Cancer biomarker detection: recent achievements and challenges. , 2015, Chemical Society reviews.

[34]  Erik Winfree,et al.  Robustness and modularity properties of a non-covalent DNA catalytic reaction , 2010, Nucleic acids research.

[35]  Aviv Regev,et al.  Nucleic acid detection with CRISPR-Cas13a/C2c2 , 2017, Science.

[36]  F. Slack,et al.  The Role of Non-coding RNAs in Oncology , 2019, Cell.

[37]  S. Yao,et al.  Functional Titanium Carbide MXenes-Loaded Entropy-Driven RNA Explorer for Long Noncoding RNA PCA3 Imaging in Live Cells. , 2019, Analytical chemistry.

[38]  S. S. Olmsted,et al.  Requirements for high impact diagnostics in the developing world , 2006, Nature.

[39]  James J. Collins,et al.  Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 , 2018, Science.

[40]  Xiyun Yan,et al.  Label-free high-throughput microRNA expression profiling from total RNA , 2011, Nucleic acids research.

[41]  T. Thum,et al.  Regulation and function of miRNA-21 in health and disease , 2011, RNA biology.

[42]  Chun-yang Zhang,et al.  Quencher-free fluorescent method for homogeneously sensitive detection of microRNAs in human lung tissues. , 2014, Analytical chemistry.

[43]  Xi Chen,et al.  Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods , 2011, Nucleic acids research.

[44]  Huangxian Ju,et al.  Target-driven DNA association to initiate cyclic assembly of hairpins for biosensing and logic gate operation† †Electronic supplementary information (ESI) available: Supplementary table and figures. See DOI: 10.1039/c5sc01215e Click here for additional data file. , 2015, Chemical science.

[45]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  L. Marraffini,et al.  CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA , 2008, Science.

[47]  Qi Zhou,et al.  CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity , 2019, Genome Biology.

[48]  Cuichen Wu,et al.  A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells , 2015, Journal of the American Chemical Society.

[49]  M. Rodicio,et al.  Detection methods for microRNAs in clinic practice. , 2013, Clinical biochemistry.

[50]  Yi Lu,et al.  Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic Acid Targets. , 2019, Journal of the American Chemical Society.

[51]  C. Fan,et al.  Isothermal Amplification of Nucleic Acids. , 2015, Chemical reviews.

[52]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Itamar Willner,et al.  Diagnosing the miR-141 prostate cancer biomarker using nucleic acid-functionalized CdSe/ZnS QDs and telomerase† †Electronic supplementary information (ESI) available: Optimization of detection conditions and tabulation of data in Fig. 3. See DOI: 10.1039/c4sc02104e1 Click here for additional data fi , 2014, Chemical science.

[54]  Kemin Wang,et al.  A DNA nanowire based localized catalytic hairpin assembly reaction for microRNA imaging in live cells† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02943a , 2018, Chemical science.