Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation

This paper considers the inverse problem for identifying the initial value problem of a space-time fractional diffusion wave equation. In general, this problem is ill-posed and the Landweber iterative regularization method is used to solve this problem. The error estimates between the exact solution and the regularized solution are given under the a priori parameter choice rule and the a posteriori parameter choice rule, respectively. In order to verify the validity and stability of the used method, numerical examples of two different dimensional cases with experimental data are performed.

[1]  Fan Yang,et al.  Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain , 2018 .

[2]  M. Slodicka,et al.  Recognition of a time-dependent source in a time-fractional wave equation , 2017 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  Liangliang Sun,et al.  Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation , 2016, Appl. Math. Lett..

[5]  Mansur I. Ismailov,et al.  Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions , 2016 .

[6]  Richard L. Magin,et al.  Solving the fractional order Bloch equation , 2009 .

[7]  Fan Yang,et al.  The truncation method for the Cauchy problem of the inhomogeneous Helmholtz equation , 2019 .

[8]  Rudolf Hilfer,et al.  On fractional diffusion and continuous time random walks , 2003 .

[9]  Ze Liu,et al.  Landweber iterative algorithm based on regularization in electromagnetic tomography for multiphase flow measurement , 2012 .

[10]  Rob H. De Staelen,et al.  A semi-linear delayed diffusion-wave system with distributed order in time , 2017, Numerical Algorithms.

[11]  T. Wei,et al.  Stable numerical solution to a Cauchy problem for a time fractional diffusion equation , 2014 .

[12]  Hongguang Sun,et al.  Fractional diffusion equations by the Kansa method , 2010, Comput. Math. Appl..

[13]  Masahiro Yamamoto,et al.  Global uniqueness in an inverse problem for time fractional diffusion equations , 2016, 1601.00810.

[14]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[15]  Fan Yang,et al.  Landweber iterative regularization method for identifying the unknown source of the modified Helmholtz equation , 2017 .

[16]  Fan Yang,et al.  The method of simplified Tikhonov regularization for a time-fractional inverse diffusion problem , 2018, Math. Comput. Simul..

[17]  Fan Yang,et al.  IDENTIFYING AN UNKNOWN SOURCE IN SPACE-FRACTIONAL DIFFUSION EQUATION , 2014 .

[18]  Salih Tatar,et al.  Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation , 2016 .

[19]  Fan Yang,et al.  The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation , 2015 .

[20]  Fan Yang,et al.  A mollification regularization method for unknown source in time-fractional diffusion equation , 2014, Int. J. Comput. Math..

[21]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[22]  Yun Zhang,et al.  The backward problem for a time-fractional diffusion-wave equation in a bounded domain , 2018, Comput. Math. Appl..

[23]  Jianfei Huang,et al.  Two finite difference schemes for time fractional diffusion-wave equation , 2013, Numerical Algorithms.

[24]  Fan Yang,et al.  The quasi‐reversibility method for a final value problem of the time‐fractional diffusion equation with inhomogeneous source , 2018 .

[25]  Fan Yang,et al.  The inverse source problem for time-fractional diffusion equation: stability analysis and regularization , 2015 .

[26]  Xu Han,et al.  An improved iteration regularization method and application to reconstruction of dynamic loads on a plate , 2011, J. Comput. Appl. Math..

[27]  Rob H. De Staelen,et al.  Numerically pricing double barrier options in a time-fractional Black-Scholes model , 2017, Comput. Math. Appl..

[28]  Salih Tatar,et al.  An inverse source problem for a one-dimensional space–time fractional diffusion equation , 2015 .

[29]  Xindong Zhang,et al.  Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation , 2014, Numerical Algorithms.

[30]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[31]  Fan Yang,et al.  The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain , 2018, Numerical Algorithms.

[32]  Infinitely many solutions for a class of fourth-order partially sublinear elliptic problem , 2017 .

[33]  Changpin Li,et al.  Numerical Solution of Fractional Diffusion-Wave Equation , 2016 .

[34]  A. Lopushansky INVERSE SOURCE CAUCHY PROBLEM FOR A TIME FRACTIONAL DIFFUSION-WAVE EQUATION WITH DISTRIBUTIONS , 2017 .

[35]  Otmar Scherzer,et al.  Convergence Criteria of Iterative Methods Based on Landweber Iteration for Solving Nonlinear Problems , 1995 .

[36]  Huy Tuan Nguyen,et al.  Regularized solution of an inverse source problem for a time fractional diffusion equation , 2016 .

[37]  Junxiong Jia,et al.  Maximum principles for a time-space fractional diffusion equation , 2016, Appl. Math. Lett..

[38]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[39]  Rob H. De Staelen,et al.  On a class of non-linear delay distributed order fractional diffusion equations , 2017, J. Comput. Appl. Math..

[40]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .