Applications of the Characteristic Function Based Continuum GMM in Finance

A review of the theoretical properties of the GMM with a continuum of moment conditions is presented. Numerical methods for its implementation are discussed. A simulation study based on the stable distribution and an empirical application based on the autoregressive variance Gamma model are performed. Using the Alcoa price data, the findings suggest that investors require a positive premium for bearing the expected risk while a negative penalty is attached to unexpected risk.

[1]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[2]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[3]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[4]  A. Paulson,et al.  The estimation of the parameters of the stable laws , 1975 .

[5]  A. Feuerverger,et al.  On the Efficiency of Empirical Characteristic Function Procedures , 1981 .

[6]  Luis M. Viceira,et al.  Spectral GMM Estimation of Continuous-Time Processes , 1999 .

[7]  S. James Press,et al.  Estimation in Univariate and Multivariate Stable Distributions , 1972 .

[8]  Qing Liu,et al.  A note on Gauss—Hermite quadrature , 1994 .

[9]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[10]  Jun Yu,et al.  EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION , 2001, Econometric Theory.

[11]  J. Florens,et al.  GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS , 2000, Econometric Theory.

[12]  Jun Yu,et al.  A class of nonlinear stochastic volatility models and its implications for pricing currency options , 2006, Comput. Stat. Data Anal..

[13]  C. Gouriéroux,et al.  The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .

[14]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[15]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[16]  V. Zolotarev One-dimensional stable distributions , 1986 .

[17]  Peter E. Rossi,et al.  Bayesian analysis of stochastic volatility models with fat-tails and correlated errors , 2004 .

[18]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[19]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .

[20]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[21]  Engle Russel,et al.  Autoregressive Gamma Processes , 2022 .

[22]  Luc Bauwens,et al.  Intradaily dynamic portfolio selection , 2010, Comput. Stat. Data Anal..

[23]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .

[24]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[25]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[26]  S. Rachev,et al.  Maximum likelihood estimation of stable Paretian models , 1999 .

[27]  A. Graja Bayesian Analysis of Stochastic Volatility Models , 2009 .

[28]  Donald W. K. Andrews,et al.  An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1992 .

[29]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[30]  G. J. Jiang,et al.  Estimation of Continuous-Time Processes via the Empirical Characteristic Function , 2002 .

[31]  Jun Yu Empirical Characteristic Function Estimation and Its Applications , 2003 .

[32]  Pierre Duchesne,et al.  Testing for multivariate autoregressive conditional heteroskedasticity using wavelets , 2006, Comput. Stat. Data Anal..

[33]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[34]  Eric Renault,et al.  Estimation of Stable Distributions by Indirect Inference , 2009 .

[35]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[36]  Jean-Pierre Florens,et al.  Efficient GMM Estimation Using the Empirical Characteristic Function , 2002 .

[37]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[38]  J. Florens,et al.  Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization , 2003 .

[39]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[40]  M. Carrasco,et al.  EFFICIENT ESTIMATION USING THE CHARACTERISTIC FUNCTION , 2013, Econometric Theory.

[41]  K. French,et al.  Expected stock returns and volatility , 1987 .

[42]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[43]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[44]  R. Weron Correction to: "On the Chambers–Mallows–Stuck Method for Simulating Skewed Stable Random Variables" , 1996 .

[45]  Marc S. Paolella Intermediate Probability: A Computational Approach , 2007 .

[46]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[47]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[48]  Rachidi Kotchoni,et al.  Shrinkage Realized Kernels , 2010 .

[49]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[50]  J. L. Nolan,et al.  Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .

[51]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .

[52]  A. Feuerverger,et al.  An efficiency result for the empirical characteristic function in stationary time-series models , 1990 .

[53]  J. Florens,et al.  Efficient estimation of general dynamic models with a continuum of moment conditions , 2007 .

[54]  J. Huston McCulloch Numerical approximation of the symmetric stable distribution and density , 1998 .

[55]  S. Satchell,et al.  Theory & Methods: Estimation of the Stochastic Volatility Model by the Empirical Characteristic Function Method , 2002 .