Improved Iterative Error Analysis Using Spectral Similarity Measures for Vegetation Classification in Hyperspectral Images

Iterative error analysis (IEA) is one of popular, sequential and linear constrained endmember extraction algorithm that uses spectral angle mapping (SAM) to calculate angles between spectral vectors. However, IEA has a limit that discriminating similar spectral vector is difficult because SAM does not consider positive and negative correlations. Since vegetation has similar spectral properties, it is difficult to classify different vegetation types. To improve IEA for various applications, such as crop classification and change detection, spectral similarity measures other than SAM have been applied to IEA. Many spectral similarity measures have been developed to calculate the similarities among spectral signatures and these are divided into the original methods and the newly developed hybrid algorithms. In this study, the original methods used were SAM, SCA, and SID, while the hybrid methods included SAMSID, SCASID, Jeffries-matusita measures-SAM (JMSAM), and normalized spectral similarity score (NS3). A Compact airborne spectrographic imager image including three crops and road was used and similarity values of four endmembers extracted by modified IEA were calculated. The CASI image was classified using endmembers and minimum distance classifier. The classification accuracy of the modified IEA with SMA, SCA, SID, SAMSID, SCASID, JMSAM, and NS3 were 84.45%, 85.56%, 61.47%, 65.83%, 62.11%, 93.47%, 90.29%. SID based algorithm has lower accuracy because SID tends to make two similar spectral signatures more similar. The results showed that JASAM was most effective to classify different vegetation types. The modified IEA with JMSAM could classify vegetation more effectively than the original IEA.

[1]  Chein-I Chang,et al.  An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis , 2000, IEEE Trans. Inf. Theory.

[2]  Paul D. Gader,et al.  Hyperspectral Band Selection and Endmember Detection Using Sparsity Promoting Priors , 2008, IEEE Geoscience and Remote Sensing Letters.

[3]  S. Sanjeevi,et al.  Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[4]  J. Sweet,et al.  The spectral similarity scale and its application to the classification of hyperspectral remote sensing data , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[5]  F. Meer The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery , 2006 .

[6]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[7]  S. Ghosh,et al.  Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data , 2007, Precision Agriculture.

[8]  Antonio J. Plaza,et al.  Real-time spectral unmixing using iterative error analysis on commodity graphics processing units , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Rama Rao Nidamanuri,et al.  Normalized Spectral Similarity Score ( ${\hbox{NS}}^{3}$) as an Efficient Spectral Library Searching Method for Hyperspectral Image Classification , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  P. R. Meneses,et al.  Spectral Correlation Mapper ( SCM ) : An Improvement on the Spectral Angle Mapper ( SAM ) , 2000 .

[11]  Chein-I. Chang,et al.  New Hyperspectral Discrimination Measure for Spectral Characterization , 2004 .