Finding the distance to instability of a large sparse matrix

The distance to instability of a matrix A is a robust measure for the stability of the corresponding dynamical system Ẋ = Ax, known to be far more reliable than checking the eigenvalues of A. In this paper, a new algorithm for computing such a distance is sketched. Built on existing approaches, its computationally most expensive part involves a usually modest number of shift-and-invert Arnoldi iterations. This makes it possible to address large sparse matrices, such as those arising from discretized partial differential equations.

[1]  M. Hochstenbach VARIATIONS ON HARMONIC RAYLEIGH – RITZ FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 2005 .

[2]  D. Hinrichsen,et al.  Stability radii of linear systems , 1986 .

[3]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[4]  J. Demmel A counterexample for two conjectures about stability , 1987 .

[5]  Daniel Kressner,et al.  Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II , 2005, TOMS.

[6]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[7]  G. Alistair Watson,et al.  An Algorithm for Computing the Distance to Instability , 1998, SIAM J. Matrix Anal. Appl..

[8]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[9]  K. Meerbergen,et al.  Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems , 1996 .

[10]  Y. Chahlaoui,et al.  The H∞-norm calculation for large sparse systems , 2004 .

[11]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[12]  P. Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .

[13]  Karl Meerbergen,et al.  Using Generalized Cayley Transformations within an Inexact Rational Krylov Sequence Method , 1998, SIAM J. Matrix Anal. Appl..

[14]  C. Loan How Near is a Stable Matrix to an Unstable Matrix , 1984 .

[15]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[16]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[17]  Diederich Hinrichsen,et al.  Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.

[18]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[19]  Paul Van Dooren,et al.  Convergence of the calculation of Hoo norms and related questions , 1998 .

[20]  Daniel Kressner,et al.  Perturbation Bounds for Isotropic Invariant Subspaces of Skew-Hamiltonian Matrices , 2005, SIAM J. Matrix Anal. Appl..

[21]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[22]  A. Spence,et al.  Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .

[23]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[24]  Doktor der Naturwissenschaften Numerical Methods and Software for General and Structured Eigenvalue Problems , 2004 .

[25]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[26]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[27]  C. Loan A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .

[28]  Ming Gu,et al.  Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..

[29]  Diederich Hinrichsen,et al.  An algorithm for the computation of the structured complex stability radius , 1989, Autom..

[30]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[31]  Jack Dongarra,et al.  A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .

[32]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[33]  David S. Watkins,et al.  On Hamiltonian and symplectic Lanczos processes , 2004 .