Finding the distance to instability of a large sparse matrix
暂无分享,去创建一个
[1] M. Hochstenbach. VARIATIONS ON HARMONIC RAYLEIGH – RITZ FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 2005 .
[2] D. Hinrichsen,et al. Stability radii of linear systems , 1986 .
[3] A. Lewis,et al. Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .
[4] J. Demmel. A counterexample for two conjectures about stability , 1987 .
[5] Daniel Kressner,et al. Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II , 2005, TOMS.
[6] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[7] G. Alistair Watson,et al. An Algorithm for Computing the Distance to Instability , 1998, SIAM J. Matrix Anal. Appl..
[8] R. Byers. A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .
[9] K. Meerbergen,et al. Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems , 1996 .
[10] Y. Chahlaoui,et al. The H∞-norm calculation for large sparse systems , 2004 .
[11] S. Boyd,et al. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .
[12] P. Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .
[13] Karl Meerbergen,et al. Using Generalized Cayley Transformations within an Inexact Rational Krylov Sequence Method , 1998, SIAM J. Matrix Anal. Appl..
[14] C. Loan. How Near is a Stable Matrix to an Unstable Matrix , 1984 .
[15] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[16] M. Steinbuch,et al. A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .
[17] Diederich Hinrichsen,et al. Mathematical Systems Theory I , 2006, IEEE Transactions on Automatic Control.
[18] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[19] Paul Van Dooren,et al. Convergence of the calculation of Hoo norms and related questions , 1998 .
[20] Daniel Kressner,et al. Perturbation Bounds for Isotropic Invariant Subspaces of Skew-Hamiltonian Matrices , 2005, SIAM J. Matrix Anal. Appl..
[21] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[22] A. Spence,et al. Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices , 1994 .
[23] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[24] Doktor der Naturwissenschaften. Numerical Methods and Software for General and Structured Eigenvalue Problems , 2004 .
[25] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[26] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[27] C. Loan. A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .
[28] Ming Gu,et al. Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..
[29] Diederich Hinrichsen,et al. An algorithm for the computation of the structured complex stability radius , 1989, Autom..
[30] Edward J. Davison,et al. A formula for computation of the real stability radius , 1995, Autom..
[31] Jack Dongarra,et al. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .
[32] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[33] David S. Watkins,et al. On Hamiltonian and symplectic Lanczos processes , 2004 .