Paramecium Genetics, Genomics, and Evolution

The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.

[1]  A. Couloux,et al.  Dynamics of Gene Loss following Ancient Whole-Genome Duplication in the Cryptic Paramecium Complex , 2023, Molecular biology and evolution.

[2]  Chundi Wang,et al.  Small RNA-mediated genome rearrangement pathways in ciliates. , 2022, Trends in genetics : TIG.

[3]  T. Pröschold,et al.  Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts , 2022, Scientific Reports.

[4]  F. Catania,et al.  Intronization Signatures in Coding Exons Reveal the Evolutionary Fluidity of Eukaryotic Gene Architecture , 2022, Microorganisms.

[5]  Paul E Schavemaker,et al.  Evolutionary bioenergetics of ciliates , 2022, The Journal of eukaryotic microbiology.

[6]  Parul Johri,et al.  A Population-Genetic Lens into the Process of Gene Loss Following Whole-Genome Duplication , 2022, Molecular biology and evolution.

[7]  R. Margueron,et al.  Paramecium Polycomb repressive complex 2 physically interacts with the small RNA-binding PIWI protein to repress transposable elements. , 2022, Developmental cell.

[8]  J. Boenigk,et al.  Paramecium epigenetics in development and proliferation , 2022, The Journal of eukaryotic microbiology.

[9]  L. Katz,et al.  Epigenetic influences of mobile genetic elements on ciliate genome architecture and evolution , 2022, The Journal of eukaryotic microbiology.

[10]  M. Rautian,et al.  Paramecium bursaria—A Complex of Five Cryptic Species: Mitochondrial DNA COI Haplotype Variation and Biogeographic Distribution , 2021, Diversity.

[11]  G. McVean,et al.  Recommendations for improving statistical inference in population genomics , 2021, bioRxiv.

[12]  N. Wackerow-Kouzova,et al.  Clarification of the Taxonomic Position of Paramecium caudatum Micronucleus Symbionts , 2021, Current Microbiology.

[13]  J. Thorne,et al.  Convergent evolution of polyploid genomes from across the eukaryotic tree of life , 2021, G3.

[14]  David C. Jones,et al.  Somatic mutation rates scale with lifespan across mammals , 2021, Nature.

[15]  A. Couloux,et al.  Massive colonization of protein-coding exons by selfish genetic elements in Paramecium germline genomes , 2020, bioRxiv.

[16]  L. Duret,et al.  Evolutionary Plasticity of Mating-Type Determination Mechanisms in Paramecium aurelia Sibling Species , 2020, Genome biology and evolution.

[17]  Isheng. J. Tsai,et al.  Genome plasticity in Paramecium bursaria revealed by population genomics , 2020, BMC Biology.

[18]  Augustin de Vanssay,et al.  The Paramecium histone chaperone Spt16-1 is required for Pgm endonuclease function in programmed genome rearrangements , 2020, PLoS genetics.

[19]  A. Potekhin,et al.  Paramecium Diversity and a New Member of the Paramecium aurelia Species Complex Described from Mexico , 2020 .

[20]  Romain Le Bars,et al.  Functional diversification of Paramecium Ku80 paralogs safeguards genome integrity during precise programmed DNA elimination , 2020, PLoS genetics.

[21]  B. Charlesworth,et al.  Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection , 2019, Genetics.

[22]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[23]  Rebecca Hagen,et al.  Environmentally induced plasticity of programmed DNA elimination boosts somatic variability in Paramecium tetraurelia , 2019, Genome research.

[24]  C. Bandi,et al.  Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales , 2019, The ISME Journal.

[25]  F. Zhao,et al.  Genetic basis for the establishment of endosymbiosis in Paramecium , 2019, The ISME Journal.

[26]  L. Holland,et al.  A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution? , 2018, Genome Biology.

[27]  M. Lynch,et al.  Evolution and Selection of Quantitative Traits , 2018, Oxford Scholarship Online.

[28]  M. Lynch,et al.  Limited Mutation-Rate Variation Within the Paramecium aurelia Species Complex , 2018, G3: Genes, Genomes, Genetics.

[29]  M. Lynch,et al.  Population Genetics of Paramecium Mitochondrial Genomes: Recombination, Mutation Spectrum, and Efficacy of Selection , 2018, bioRxiv.

[30]  Jacob D. Washburn,et al.  Patterns of Population Variation in Two Paleopolyploid Eudicot Lineages Suggest That Dosage-Based Selection on Homeologs Is Long-Lived , 2018, Genome biology and evolution.

[31]  M. Lynch,et al.  Evolutionary determinants of genome-wide nucleotide composition , 2017, Nature Ecology & Evolution.

[32]  C. Smadja,et al.  Variation in recombination frequency and distribution across eukaryotes: patterns and processes , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[33]  B. Payseur,et al.  Effects of Demographic History on the Detection of Recombination Hotspots from Linkage Disequilibrium , 2017, Molecular biology and evolution.

[34]  E. Orias,et al.  Genetics and Epigenetics of Mating Type Determination in Paramecium and Tetrahymena. , 2017, Annual review of microbiology.

[35]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[36]  J. Gouzy,et al.  Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression , 2017, BMC Genomics.

[37]  M. Lynch,et al.  Population Genomics of Paramecium Species , 2017, Molecular biology and evolution.

[38]  F. Guérin,et al.  Flow cytometry sorting of nuclei enables the first global characterization of Paramecium germline DNA and transposable elements , 2017, BMC Genomics.

[39]  L. Duret,et al.  The fitness cost of mis-splicing is the main determinant of alternative splicing patterns , 2017, Genome Biology.

[40]  M. Lynch,et al.  Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts , 2016, Genome biology and evolution.

[41]  Michael Lynch,et al.  Genetic drift, selection and the evolution of the mutation rate , 2016, Nature Reviews Genetics.

[42]  M. Lynch,et al.  Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. , 2015, Molecular biology and evolution.

[43]  M. Lynch,et al.  Background Mutational Features of the Radiation-Resistant Bacterium Deinococcus radiodurans. , 2015, Molecular biology and evolution.

[44]  M. Lynch,et al.  The Rate and Molecular Spectrum of Spontaneous Mutations in the GC-Rich Multichromosome Genome of Burkholderia cenocepacia , 2015, Genetics.

[45]  M. Lynch,et al.  Differential retention and divergent resolution of duplicate genes following whole-genome duplication , 2014, Genome research.

[46]  J. Birchler,et al.  Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. , 2014, Current opinion in plant biology.

[47]  M. Lynch,et al.  Insights into Three Whole-Genome Duplications Gleaned from the Paramecium caudatum Genome Sequence , 2014, Genetics.

[48]  J. Aury,et al.  Genome-defence small RNAs exapted for epigenetic mating-type inheritance , 2014, Nature.

[49]  S. Shigenobu,et al.  Comparison of gene expression of Paramecium bursaria with and without Chlorella variabilis symbionts , 2014, BMC Genomics.

[50]  R. B. Azevedo,et al.  Accumulation of Spontaneous Mutations in the Ciliate Tetrahymena thermophila , 2013, Genetics.

[51]  L. Excoffier,et al.  Robust Demographic Inference from Genomic and SNP Data , 2013, PLoS genetics.

[52]  P. Keightley,et al.  A Comparison of Models to Infer the Distribution of Fitness Effects of New Mutations , 2013, Genetics.

[53]  Abraham E. Tucker,et al.  Extraordinary genome stability in the ciliate Paramecium tetraurelia , 2012, Proceedings of the National Academy of Sciences.

[54]  Benjamin E. Lauderdale,et al.  The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences , 2012, PLoS genetics.

[55]  R. Veitia,et al.  Gene balance hypothesis: Connecting issues of dosage sensitivity across biological disciplines , 2012, Proceedings of the National Academy of Sciences.

[56]  Han-Jung Lee,et al.  Gene transport and expression by arginine-rich cell-penetrating peptides in Paramecium. , 2011, Gene.

[57]  M. Lynch The Lower Bound to the Evolution of Mutation Rates , 2011, Genome biology and evolution.

[58]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[59]  Aurélie Kapusta,et al.  Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling , 2011, Nucleic acids research.

[60]  Laura A. Katz,et al.  Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. , 2010, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[61]  M. Lynch Evolution of the mutation rate. , 2010, Trends in genetics : TIG.

[62]  David Sankoff,et al.  The collapse of gene complement following whole genome duplication , 2010, BMC Genomics.

[63]  D. Kahn,et al.  The Relationship among Gene Expression, the Evolution of Gene Dosage, and the Rate of Protein Evolution , 2010, PLoS genetics.

[64]  Simone Marker,et al.  Distinct RNA-dependent RNA polymerases are required for RNAi triggered by double-stranded RNA versus truncated transgenes in Paramecium tetraurelia , 2010, Nucleic acids research.

[65]  Ryan D. Hernandez,et al.  Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data , 2009, PLoS genetics.

[66]  M. Neiman,et al.  The causes of mutation accumulation in mitochondrial genomes , 2009, Proceedings of the Royal Society B: Biological Sciences.

[67]  M. Lynch,et al.  Genetic diversity in the Paramecium aurelia species complex. , 2009, Molecular biology and evolution.

[68]  M. Nowacki,et al.  Silencing-associated and meiosis-specific small RNA pathways in Paramecium tetraurelia , 2008, Nucleic acids research.

[69]  O. Jaillon,et al.  Translational control of intron splicing in eukaryotes , 2008, Nature.

[70]  Marie Sémon,et al.  Consequences of genome duplication. , 2007, Current opinion in genetics & development.

[71]  S. Otto,et al.  The Evolutionary Consequences of Polyploidy , 2007, Cell.

[72]  R. Guigó,et al.  Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia , 2006, Nature.

[73]  Kevin P. Byrne,et al.  Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts , 2006, Nature.

[74]  D. Fraga,et al.  The Particle Inflow Gun can be used to Co‐transform Paramecium using Tungsten Particles , 2006, The Journal of eukaryotic microbiology.

[75]  T. Berendonk,et al.  Intraspecific Genetic Variation in Paramecium Revealed by Mitochondrial Cytochrome c Oxidase I Sequences , 2006, The Journal of eukaryotic microbiology.

[76]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[77]  P. Wincker,et al.  High Coding Density on the Largest Paramecium tetraurelia Somatic Chromosome , 2004, Current Biology.

[78]  Noboru Jo Sakabe,et al.  Detection and evaluation of intron retention events in the human transcriptome. , 2004, RNA.

[79]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[80]  B. Charlesworth,et al.  Effects of metapopulation processes on measures of genetic diversity. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[81]  Michael Lynch,et al.  The Origin of Interspecific Genomic Incompatibility via Gene Duplication , 2000, The American Naturalist.

[82]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[83]  N. Klauke,et al.  Green fluorescent protein‐tagged sarco(endo)plasmic reticulum Ca2+‐ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects , 2000, Molecular microbiology.

[84]  D M Prescott,et al.  The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. , 1999, Nucleic acids research.

[85]  R. Kissmehl,et al.  Transformation of Paramecium tetraurelia by Electroporation or Particle Bombardment , 1999, The Journal of eukaryotic microbiology.

[86]  K. Hauser,et al.  Molecular characterization of a sarco(endo)plasmic reticulum Ca2+-ATPase gene from Paramecium tetraurelia and localization of its gene product to sub-plasmalemmal calcium stores. , 1998, The Biochemical journal.

[87]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[88]  T. Fenchel,et al.  Local versus global diversity of microorganisms : cryptic diversity of ciliated protozoa , 1997 .

[89]  Jean Cohen,et al.  Genetic approach to regulated exocytosis using functional complementation in Paramecium: identification of the ND7 gene required for membrane fusion. , 1997 .

[90]  J. Preer Whatever happened to paramecium genetics? , 1997, Genetics.

[91]  A. Butler,et al.  Epigenetic self-regulation of developmental excision of an internal eliminated sequence on Paramecium tetraurelia. , 1995, Genes & development.

[92]  R. Hinrichsen,et al.  Extremely short 20-33 nucleotide introns are the standard length in Paramecium tetraurelia. , 1994, Nucleic acids research.

[93]  L. Amar Chromosome end formation and internal sequence elimination as alternative genomic rearrangements in the ciliate Paramecium. , 1994, Journal of molecular biology.

[94]  P. Dupuis The beta‐tubulin genes of Paramecium are interrupted by two 27 bp introns. , 1992, The EMBO journal.

[95]  I. Gibson,et al.  R-body-producing bacteria , 1989 .

[96]  R. Wichterman The Biology of Paramecium , 1986, Springer US.

[97]  T. Nerad,et al.  Paramecium sonneborni n. sp., a New Member of the Paramecium aurelia Species-Complex† , 1983 .

[98]  G. Beale Tracy Morton Sonneborn, 19 October 1905 - 26 January 1981 , 1982, Biographical Memoirs of Fellows of the Royal Society.

[99]  T. M. Sonneborn The Paramecium aurelia Complex of Fourteen Sibling Species , 1975 .

[100]  A. Jurand,et al.  Kappa and other endosymbionts in Paramecium aurelia , 1974 .

[101]  Bruce C. Byrne Mutational Analysis of Mating Type Inheritance in Syngen 4 of PARAMECIUM AURELIA. , 1973, Genetics.

[102]  C. Kung Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. , 1971, Genetics.

[103]  T. M. Sonneborn Gene and Cytoplasm: I. The Determination and Inheritance of the Killer Character in Variety 4 of Paramecium Aurelia. , 1943, Proceedings of the National Academy of Sciences of the United States of America.

[104]  T. M. Sonneborn,et al.  Sex, Sex Inheritance and Sex Determination in Paramecium Aurelia. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[105]  OUP accepted manuscript , 2021, Genome Biology and Evolution.

[106]  E. Przybós,et al.  New, world-wide data on the distribution of species of the Paramecium aurelia complex (Ciliophora, Protozoa). , 2010, Folia biologica.

[107]  J. Beisson,et al.  Paramecium tetraurelia: the renaissance of an early unicellular model. , 2010, Cold Spring Harbor protocols.