Local stability and a renormalized Newton Method for equilibrium liquid crystal director modeling

We consider the nonlinear systems of equations that result from discretizations of a prototype variational model for the equilibrium director field characterizing the orientational properties of a liquid crystal material. In the presence of pointwise unit-vector constraints and coupled electric fields, the numerical solution of such equations by Lagrange-Newton methods leads to problems with a double saddle-point form, for which we have previously proposed a preconditioned nullspace method as an effective solver [A. Ramage and E. C. Gartland, Jr., submitted]. The characterization of local stability of solutions is complicated by the double saddle-point structure, and here we develop efficiently computable criteria in terms of minimum eigenvalues of certain projected Schur complements. We also propose a modified outer iteration (“Renormalized Newton Method”) in which the orientation variables are normalized onto the constraint manifold at each iterative step. This scheme takes advantage of the special structure of these problems, and we prove that it is locally quadratically convergent. The Renormalized Newton Method bears some resemblance to the Truncated Newton Method of computational micromagnetics, and we compare and contrast the two.

[1]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[2]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[3]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[4]  Carlos J. García-Cervera,et al.  NUMERICAL MICROMAGNETICS: A REVIEW , 2007 .

[5]  Andreas Prohl,et al.  Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism , 2006, SIAM Rev..

[6]  R. Fletcher Practical Methods of Optimization , 1988 .

[7]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[8]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[9]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[10]  Mitchell Luskin,et al.  Relaxation and gradient methods for molecular orientation in liquid crystals , 1989 .

[11]  Iain W. Stewart The static and dynamic continuum theory of liquid crystals , 2004 .

[12]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[13]  Iain W. Stewart,et al.  The Static and Dynamic Continuum Theory of Liquid Crystals , 2001 .

[14]  Chain‐Shu Hsu,et al.  Liquid Crystals , 1934, Nature.

[15]  Willoughby,et al.  Lanczos Algorithms for Large Symmetric Eigenvalue Computations Vol. II Programs , 1984 .

[16]  Alison Ramage,et al.  A Preconditioned Nullspace Method for Liquid Crystal Director Modeling , 2013, SIAM J. Sci. Comput..

[17]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[18]  Epifanio G. Virga,et al.  Variational Theories for Liquid Crystals , 2018 .

[19]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[20]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[21]  O. Lavrentovich,et al.  Electric-Field Induced Transitions in a Cholesteric Liquid-Crystal Film with Negative Dielectric Anisotropy , 2010 .

[22]  San-Yih Lin,et al.  Relaxation methods for liquid crystal problems , 1989 .

[23]  Philip E. Gill,et al.  Practical optimization , 1981 .

[24]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.