A review of eutectic salts as phase change energy storage materials in the context of concentrated solar power

[1]  Shipeng Sun,et al.  Comprehensive performance of composite phase change materials based on ternary eutectic chloride with CuO nanoparticles for thermal energy storage systems , 2023, Solar Energy.

[2]  G. Fang,et al.  Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review , 2022, Solar Energy Materials and Solar Cells.

[3]  Wei Wang,et al.  A review on numerical simulation, optimization design and applications of packed-bed latent thermal energy storage system with spherical capsules , 2022, Journal of Energy Storage.

[4]  W. Wang,et al.  Preparation and performance improvement of chlorides/MgO ceramics shape-stabilized phase change materials with expanded graphite for thermal energy storage system , 2022, Applied Energy.

[5]  F. Bruno,et al.  A review of high temperature ( 500 °C) latent heat thermal energy storage , 2022, Renewable and Sustainable Energy Reviews.

[6]  S. Chatterjee,et al.  Application of phase changing materials in a CSP plant for thermal energy storage: A review on recent developments , 2022, Materials Today: Proceedings.

[7]  Rahul Kumar,et al.  Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system , 2022, Journal of Energy Storage.

[8]  Limei Tian,et al.  Component-dependent thermal properties of molten salt eutectics for solar thermal energy storage: experiments, molecular simulation and applications , 2022, Applied Thermal Engineering.

[9]  Rajesh Kumar,et al.  CFD approach for the enhancement of thermal energy storage in phase change material charged heat exchanger , 2022, Case Studies in Thermal Engineering.

[10]  G. Pei,et al.  The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system , 2022, Energy.

[11]  M. Samykano,et al.  Thermophysical properties enhancement and characterization of CuO nanoparticles enhanced HITEC molten salt for concentrated solar power applications , 2022, International Communications in Heat and Mass Transfer.

[12]  Zirui Wang,et al.  Optimum design and key thermal property of NaCl–KCl–CaCl2 eutectic salt for ultra-high-temperature thermal energy storage , 2022, Solar Energy Materials and Solar Cells.

[13]  A. Kumar,et al.  An experimental investigation of cylindrical shaped thermal storage unit consisting of phase change material based helical coil heat exchanger , 2022, Journal of Energy Storage.

[14]  Yuting Wu,et al.  Comparative review of different influence factors on molten salt corrosion characteristics for thermal energy storage , 2022, Solar Energy Materials and Solar Cells.

[15]  Y. Li,et al.  Effect of EG particle size on the thermal properties of NaNO3–NaCl/EG shaped composite phase change materials , 2022, Energy.

[16]  B. Hughes,et al.  A review of thermal energy storage technologies for seasonal loops , 2022, Energy.

[17]  Bachirou Guene Lougou,et al.  Study of thermophysical properties of chloride salts doped with CuO nanoparticles for solar thermal energy storage , 2022, Solar Energy Materials and Solar Cells.

[18]  S. K. Tyagi,et al.  A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability , 2022, Solar Energy Materials and Solar Cells.

[19]  M. Samykano Role of phase change materials in thermal energy storage: Potential, recent progress and technical challenges , 2022, Sustainable Energy Technologies and Assessments.

[20]  Y. Grosu,et al.  Effect of silica nanoparticle size on the stability and thermophysical properties of molten salts based nanofluids for thermal energy storage applications at concentrated solar power plants , 2022, Journal of Energy Storage.

[21]  Xinjing Zhang,et al.  Development and investigation of form-stable quaternary nitrate salt based composite phase change material with extremely low melting temperature and large temperature range for low-mid thermal energy storage , 2022, Energy Reports.

[22]  Yajuan Zhong,et al.  Ternary chloride salt–porous ceramic composite as a high-temperature phase change material , 2022 .

[23]  Dibakar Rakshit,et al.  Heat transfer augmentation in single and multiple (cascade) phase change materials based thermal energy storage: Research progress, challenges, and recommendations , 2021, Sustainable Energy Technologies and Assessments.

[24]  R. Merchán,et al.  High temperature central tower plants for concentrated solar power: 2021 overview , 2021, Renewable and Sustainable Energy Reviews.

[25]  M. Farhadi,et al.  Analysis of a twisted double-pipe heat exchanger with lobed cross-section as a novel heat storage unit for solar collectors using phase-change material , 2021, International Communications in Heat and Mass Transfer.

[26]  H. Tan,et al.  Molecular dynamics simulation of thermodynamic properties and local structure of Na2CO3-K2CO3 eutectic salt during phase transition , 2021, Journal of Energy Storage.

[27]  Yue Zhang,et al.  Improving thermal energy storage and transfer performance in solar energy storage: Nanocomposite synthesized by dispersing nano boron nitride in solar salt , 2021, Solar Energy Materials and Solar Cells.

[28]  Deyong Che,et al.  Thermal energy storage characteristics of packed bed encapsulating spherical capsules with composite phase change materials , 2021, Applied Thermal Engineering.

[29]  Feng Ye,et al.  Development and characterization of NaCl-KCl/Kaolin composites for thermal energy storage , 2021, Solar Energy.

[30]  Chuanchang Li,et al.  Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage , 2021, Materials Today Energy.

[31]  C. Maravelias,et al.  Solid-gas thermochemical energy storage strategies for concentrating solar power: Optimization and system analysis , 2021 .

[32]  Xin-xin Zhang,et al.  Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance , 2021 .

[33]  Dibakar Rakshit,et al.  High-temperature latent thermal storage system for solar power: Materials, concepts, and challenges , 2021 .

[34]  Huaqing Xie,et al.  Ternary molten salt energy storage coupled with graphene oxide-TiN nanofluids for direct absorption solar collector , 2021, Energy and Buildings.

[35]  Cancan Zhang,et al.  Comprehensive thermal properties of molten salt nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage , 2021 .

[36]  D. Wen,et al.  Experimental investigation of a latent heat thermal energy storage unit encapsulated with molten salt/metal foam composite seeded with nanoparticles , 2021, Energy and Built Environment.

[37]  Y. Xuan,et al.  High thermal conductivity and high energy density compatible latent heat thermal energy storage enabled by porous AlN ceramics composites , 2021, International Journal of Heat and Mass Transfer.

[38]  Hui Yang,et al.  Lowest liquid phase saturation point temperature–phase separation–viscosity model for the optimal formulation of mixed fluoride salt , 2021 .

[39]  Yue Zhang,et al.  Novel high specific heat capacity ternary nitrate/nitrite eutectic salt for solar thermal energy storage , 2021 .

[40]  Weilong Wang,et al.  Thermal performance and economic evaluation of NaCl–CaCl2 eutectic salt for high-temperature thermal energy storage , 2021, Energy.

[41]  Ya-Ling He,et al.  Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach , 2021 .

[42]  Qiang Yu,et al.  Comprehensive performance of composite phase change materials based on eutectic chloride with SiO2 nanoparticles and expanded graphite for thermal energy storage system , 2021, Renewable Energy.

[43]  Chao Xu,et al.  Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants , 2020, Renewable Energy.

[44]  N. Attia,et al.  Innovative and cost-effective nanodiamond based molten salt nanocomposite as efficient heat transfer fluid and thermal energy storage media , 2021 .

[45]  F. Bruno,et al.  Techno-economic analysis on the design of sensible and latent heat thermal energy storage systems for concentrated solar power plants , 2021 .

[46]  Ty W. Neises Steady-state off-design modeling of the supercritical carbon dioxide recompression cycle for concentrating solar power applications with two-tank sensible-heat storage , 2020 .

[47]  H. Ghaebi,et al.  Heat storage process analysis in a heat exchanger containing phase change materials , 2020 .

[48]  Changjian Ling,et al.  Thermal transport and storage performances of NaCl–KCl–NaF eutectic salt for high temperatures latent heat , 2020 .

[49]  Haisheng Chen,et al.  Large scale underground seasonal thermal energy storage in China , 2020 .

[50]  H. Paksoy,et al.  Review on sensible thermal energy storage for industrial solar applications and sustainability aspects , 2020 .

[51]  Lin Gao,et al.  Nitrate based nanocomposite thermal storage materials: Understanding the enhancement of thermophysical properties in thermal energy storage , 2020 .

[52]  Weilong Wang,et al.  Ab-initio molecular dynamics calculation on microstructures and thermophysical properties of NaCl–CaCl2–MgCl2 for concentrating solar power , 2020, Solar Energy Materials and Solar Cells.

[53]  R. Saidur,et al.  Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: A critical review , 2020 .

[54]  Qiang Yu,et al.  Preparation and thermal properties of novel eutectic salt/nano-SiO2/ expanded graphite composite for thermal energy storage , 2020 .

[55]  A. E. Geweda,et al.  Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods , 2020 .

[56]  Dongmei Han,et al.  Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage , 2020 .

[57]  Qunzhi Zhu,et al.  Preparation and thermal characterization of LiNO3–NaNO3–KCl ternary mixture and LiNO3–NaNO3–KCl/EG composites , 2020 .

[58]  Y. Xuan,et al.  Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review , 2020 .

[59]  Jianqiang Wang,et al.  Assessment of effects of Mg treatment on corrosivity of molten NaCl-KCl-MgCl2 salt with Raman and Infrared spectra , 2020 .

[60]  D. Wen,et al.  Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite , 2020, Energy.

[61]  M. Rosen,et al.  A review of energy storage types, applications and recent developments , 2020 .

[62]  J. M. Coronado,et al.  High Temperature Chemical Reactions for Thermal Energy Storage , 2020 .

[63]  W. Lu,et al.  An experimental investigation of composite phase change materials of ternary nitrate and expanded graphite for medium-temperature thermal energy storage , 2020 .

[64]  Renhai Shi Applications of CALPHAD (CALculation of PHAse diagram) modeling in organic orientationally disordered phase change materials for thermal energy storage , 2020 .

[65]  K. S. Rajan,et al.  Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage , 2019, Renewable Energy.

[66]  Boshu He,et al.  Numerical study on charging characteristics of heat pipe-assisted cylindrical capsule for enhancing latent thermal energy storage , 2019, Solar Energy.

[67]  R. Saidur,et al.  Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia , 2019, Renewable Energy.

[68]  L. Cabeza,et al.  Mainstreaming commercial CSP systems: A technology review , 2019, Renewable Energy.

[69]  Vignesh Pethurajan,et al.  Heat transfer performance of graphene nano-platelets laden micro-encapsulated PCM with polymer shell for thermal energy storage based heat sink , 2019, Applied Thermal Engineering.

[70]  Yulong Ding,et al.  Investigation on the effective thermal conductivity of carbonate salt based composite phase change materials for medium and high temperature thermal energy storage , 2019, Energy.

[71]  G. Liu,et al.  Thermal Property Characterization of a Low Supercooling Degree Binary Mixed Molten Salt for Thermal Energy Storage System , 2019, International Journal of Thermophysics.

[72]  Ya-Ling He,et al.  Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions , 2019, Applied Thermal Engineering.

[73]  Inamuddin,et al.  Recent developments in phase change materials for energy storage applications: A review , 2019, International Journal of Heat and Mass Transfer.

[74]  Zhaoshuai Ma,et al.  Comparisons of thermal performance and cost for three thermal energy storage systems utilized in supercritical CO2 Brayton cycle , 2019, Energy Procedia.

[75]  G. Fang,et al.  Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials , 2018, Energy.

[76]  Shuang Wu,et al.  Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage , 2018, Energy.

[77]  Ya-Ling He,et al.  A review of phase change material and performance enhancement method for latent heat storage system , 2018, Renewable and Sustainable Energy Reviews.

[78]  Dibakar Rakshit,et al.  Solidification behavior of binary eutectic phase change material in a vertical finned thermal storage system dispersed with graphene nano-plates , 2018, Energy Conversion and Management.

[79]  M. Abdunnabi,et al.  The potential of concentrating solar power (CSP) for electricity generation in Libya , 2018, Renewable and Sustainable Energy Reviews.

[80]  J. Coventry,et al.  Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage , 2018, Energy Conversion and Management.

[81]  Xing Ju,et al.  Ca(NO3)2-NaNO3/expanded graphite composite as a novel shape-stable phase change material for mid- to high-temperature thermal energy storage , 2018 .

[82]  F. Bruno,et al.  Effect of inner coatings on the stability of chloride-based phase change materials encapsulated in geopolymers , 2018 .

[83]  Cristina Prieto,et al.  Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts , 2017 .

[84]  Lingai Luo,et al.  Thermal energy storage systems for concentrated solar power plants , 2017 .

[85]  Jing Ding,et al.  Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage , 2017 .

[86]  José Manuel Bravo,et al.  Calculating the profits of an economic MPC applied to CSP plants with thermal storage system , 2017 .

[87]  Ruzhu Wang,et al.  Experimental investigation on a novel solid-gas thermochemical sorption heat transformer for energy upgrade with a large temperature lift , 2017 .

[88]  J. Kenny,et al.  Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature , 2017 .

[89]  Dan Zhou,et al.  A study of a eutectic salt of lithium nitrate and sodium chloride (87–13%) for latent heat storage , 2017 .

[90]  Walter Ukovich,et al.  District Microgrid Management Integrated with Renewable Energy Sources, Energy Storage Systems and Electric Vehicles , 2017 .

[91]  Nasiru I. Ibrahim,et al.  Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review , 2017 .

[92]  S. Ushak,et al.  A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties , 2017 .

[93]  Emmanuel C. Nsofor,et al.  Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination , 2017, Energy.

[94]  F. Bruno,et al.  Thermal stability of Na2CO3-Li2CO3 as a high temperature phase change material for thermal energy storage , 2017 .

[95]  Wasim Saman,et al.  Development and experimental validation of a CFD model for PCM in a vertical triplex tube heat exchanger , 2017 .

[96]  Chunyu Zhu,et al.  Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation , 2017 .

[97]  Jinhong Li,et al.  Preparation and Characterization of KNO3/Diatomite Shape-Stabilized Composite Phase Change Material for High Temperature Thermal Energy Storage , 2017 .

[98]  Jan Hensen,et al.  A central solar-industrial waste heat heating system with large scale borehole thermal storage , 2017 .

[99]  Xiaoze Du,et al.  Thermal energy storage enhancement of a binary molten salt via in-situ produced nanoparticles , 2017 .

[100]  G. Flamant,et al.  Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage , 2016 .

[101]  Frank Bruno,et al.  Eutectic Na2CO3–NaCl salt: A new phase change material for high temperature thermal storage , 2016 .

[102]  Li Ru-guang,et al.  Thermal compatibility of Sodium Nitrate/Expanded Perlite composite phase change materials , 2016 .

[103]  Mahboobe Mahdavi,et al.  Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material , 2016 .

[104]  Weilong Wang,et al.  Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials , 2016 .

[105]  Zhuo Li,et al.  Analysis of HTFs, PCMs and fins effects on the thermal performance of shell–tube thermal energy storage units , 2015 .

[106]  E. Stefanakos,et al.  Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems , 2015 .

[107]  Z. G. Xu,et al.  Investigation of the Ca(NO3)2–NaNO3 mixture for latent heat storage , 2015 .

[108]  Tao Wang,et al.  Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material , 2015 .

[109]  Wasim Saman,et al.  Determination of thermo-physical properties and stability testing of high-temperature phase change materials for CSP applications , 2015 .

[110]  Alparslan Oztekin,et al.  Experimental and computational study of thermal energy storage with encapsulated NaNO3 for high temperature applications , 2015 .

[111]  Yong Li,et al.  Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage , 2015 .

[112]  F. Bruno,et al.  9 – Using solid-liquid phase change materials (PCMs) in thermal energy storage systems , 2015 .

[113]  Amir Faghri,et al.  Simulation of heat pipe-assisted latent heat thermal energy storage with simultaneous charging and discharging , 2015 .

[114]  Ming Li,et al.  Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement , 2015 .

[115]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[116]  Alexandre Szklo,et al.  Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system , 2014 .

[117]  Zhaowen Huang,et al.  Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material , 2014 .

[118]  Xiaosong Zhang,et al.  Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points , 2014 .

[119]  K. Nithyanandam,et al.  Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power , 2014 .

[120]  S. C. Kaushik,et al.  State-of-the-art of solar thermal power plants—A review , 2013 .

[121]  Noel León,et al.  High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques , 2013 .

[122]  Elias K. Stefanakos,et al.  Thermal energy storage technologies and systems for concentrating solar power plants , 2013 .

[123]  Abdallah Khellaf,et al.  A review of studies on central receiver solar thermal power plants , 2013 .

[124]  Ding Yulong,et al.  Recent progress in diatomite based composite phase change materials for thermal energy storage , 2013 .

[125]  Chakravarthy Balaji,et al.  Thermal optimization of PCM based pin fin heat sinks: An experimental study , 2013 .

[126]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[127]  T. L. Bergman,et al.  Heat pipe-assisted melting of a phase change material , 2012 .

[128]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[129]  Luisa F. Cabeza,et al.  State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization , 2010 .

[130]  S. Kanzaki,et al.  Effective Sintering Aids for Low-temperature Sintering of AlN Ceramics , 1999 .

[131]  F. Xia,et al.  Microwave Sintering of Si 3 N 4 Ceramics , 1992 .

[132]  G. Janz,et al.  Molten Salts: Volume 5, Part 2. Additional Single and Multi-Component Salt Systems. Electrical Conductance, Density, Viscosity and Surface Tension Data , 1980 .