The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample

We measure the sum of the neutrino particle masses using the three-dimensional galaxy power spectrum of the Sloan Digital Sky Survey III (SDSS-III) Baryon Oscillation Spectroscopic Survey Data Release 9 the constant MASS (CMASS) galaxy sample. Combined with the cosmic microwave background, supernova and additional baryonic acoustic oscillation data, we find upper 95 per cent confidence limits (CL) of the neutrino mass Σmν < 0.340 eV within a flat Λ cold dark matter (ΛCDM) background, and Σmν < 0.821 eV, assuming a more general background cosmological model. The number of neutrino species is measured to be Neff = 4.308 ± 0.794 and 4.032+0.870-0.894 for these two cases, respectively. We study and quantify the effect of several factors on the neutrino measurements, including the galaxy power spectrum bias model, the effect of redshift-space distortion, the cut-off scale of the power spectrum and the choice of additional data. The impact of neutrinos with unknown masses on other cosmological parameter measurements is investigated. The fractional matter density and the Hubble parameter are measured to be ΩM=0.2796±0.0097, H0=69.72+0.90−0.91 km s−1 Mpc−1 (flat ΛCDM) and ΩM=0.2798+0.0132−0.0136, H0=73.78+3.16−3.17 km s−1 Mpc−1 (more general background model). Based on a Chevallier–Polarski–Linder parametrization of the equation-of-state w of dark energy, we find that w = −1 is consistent with observations, even allowing for neutrinos. Similarly, the curvature ΩK and the running of the spectral index αs are both consistent with zero. The tensor-to-scalar ratio is constrained down to r < 0.198 (95 per cent CL, flat ΛCDM) and r < 0.440 (95 per cent CL, more general background model).

[1]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[2]  C. Tao,et al.  Observational constraints on cosmic neutrinos and dark energy revisited , 2012, 1210.2136.

[3]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.

[4]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[5]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: constraints on primordial non-Gaussianity , 2012, 1208.1491.

[6]  F. Bernardeau,et al.  Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012, 1208.1191.

[7]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[8]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[9]  A. Conley,et al.  Principal components of dark energy with Supernova Legacy Survey supernovae: The effects of systematic errors , 2012, 1207.4781.

[10]  Gong-Bo Zhao,et al.  Examining the evidence for dynamical dark energy. , 2012, Physical review letters.

[11]  Lado Samushia,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from Λ and general relativity using anisotropic clustering of galaxies , 2012, 1206.5309.

[12]  U. Seljak,et al.  Distribution function approach to redshift space distortions. Part III: halos and galaxies , 2012, 1206.4070.

[13]  J. Evslin,et al.  The reactor anomaly after Daya Bay and RENO , 2012, 1205.5499.

[14]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[15]  D. Wake,et al.  The clustering of galaxies in the SDSS‐III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large‐scale two‐point correlation function , 2012, 1203.6616.

[16]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[17]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[18]  L. Guzzo,et al.  Constraints on massive neutrinos from the CFHTLS angular power spectrum , 2012, 1203.5105.

[19]  W. Percival,et al.  The clustering of galaxies at z ≈ 0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the ΛCDM cosmology , 2012, 1202.6057.

[20]  Ashley J. Ross,et al.  CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS , 2012, 1201.2137.

[21]  W. Percival,et al.  NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES , 2012, 1201.1909.

[22]  M. Lueker,et al.  COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY , 2011, 1112.5435.

[23]  Scott Croom,et al.  WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies , 2011, 1112.4940.

[24]  M. Viel,et al.  Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.

[25]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions. Part II: N-body simulations , 2011, 1109.1609.

[26]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[27]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[28]  E. Lisi,et al.  Evidence of $\theta_{13}$>0 from global neutrino data analysis , 2011, 1106.6028.

[29]  A. Taruya,et al.  Baryon Acoustic Oscillations in 2D II: Redshift-space halo clustering in N-body simulations , 2011, 1106.4562.

[30]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[31]  B. Reid,et al.  Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.

[32]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[33]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[34]  M. Takada,et al.  Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey , 2011, 1103.3614.

[35]  J. Valle,et al.  Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters , 2011, 1103.0734.

[36]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[37]  E. Komatsu,et al.  Erratum: Massive neutrinos in cosmology: Analytic solutions and fluid approximation [Phys. Rev. D 81, 123516 (2010)] , 2010 .

[38]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM , 2010, 1009.0866.

[39]  M. Takada,et al.  Neutrino mass constraint from the Sloan Digital Sky Survey power spectrum of luminous red galaxies and perturbation theory , 2010, 1006.4845.

[40]  O. Lahav,et al.  Neutrino masses from clustering of red and blue galaxies: a test of astrophysical uncertainties , 2010, 1006.2825.

[41]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[42]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[43]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[44]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[45]  Shaun A. Thomas,et al.  Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey. , 2009, Physical review letters.

[46]  L. Verde,et al.  Robust neutrino constraints by combining low redshift observations with the CMB , 2009, 0910.0008.

[47]  M. Takada,et al.  Nonlinear power spectrum in the presence of massive neutrinos: perturbation theory approach, galaxy bias and parameter forecasts , 2009, 0907.2922.

[48]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[49]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[50]  Takahiro Nishimichi,et al.  Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces , 2009, 0906.0507.

[51]  Martin White,et al.  Critical look at cosmological perturbation theory techniques , 2009, 0905.0479.

[52]  Y. Jing,et al.  Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of $N$-body Simulations and Analytic Models , 2008, 0810.0813.

[53]  M. Kilbinger,et al.  CFHTLS weak-lensing constraints on the neutrino masses , 2008, 0810.0555.

[54]  A. Lewis,et al.  Crossing the phantom divide with parametrized post-Friedmann dark energy , 2008, 0808.3125.

[55]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[56]  M. Takada,et al.  Impact of massive neutrinos on the nonlinear matter power spectrum. , 2008, Physical review letters.

[57]  T. Hiramatsu,et al.  A Closure Theory for Nonlinear Evolution of Cosmological Power Spectra , 2007, 0708.1367.

[58]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[59]  I. Zehavi,et al.  Galaxy Evolution from Halo Occupation Distribution Modeling of DEEP2 and SDSS Galaxy Clustering , 2007, astro-ph/0703457.

[60]  R. Smith,et al.  Scale Dependence of Halo and Galaxy Bias: Effects in Real Space , 2006, astro-ph/0609547.

[61]  Gong-Bo Zhao,et al.  Cosmological neutrino mass limit and the dynamics of dark energy , 2006, astro-ph/0609463.

[62]  P. Mcdonald Clustering of dark matter tracers: Renormalizing the bias parameters , 2006, astro-ph/0609413.

[63]  Gong-Bo Zhao,et al.  Weighing neutrinos in the presence of a running primordial spectral index , 2006, astro-ph/0605742.

[64]  M. Crocce,et al.  Renormalized cosmological perturbation theory , 2005, astro-ph/0509418.

[65]  M. Crocce,et al.  Memory of initial conditions in gravitational clustering , 2005, astro-ph/0509419.

[66]  Gong-Bo Zhao,et al.  Perturbations of the Quintom Models of Dark Energy and the Effects on Observations , 2005, astro-ph/0507482.

[67]  G. Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005, hep-ph/0506164.

[68]  S. Hannestad Neutrino masses and the dark energy equation of state: relaxing the cosmological neutrino mass bound. , 2005, Physical review letters.

[69]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[70]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[71]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[72]  O. Lahav,et al.  Neutrino masses from cosmological probes , 2004, hep-ph/0412075.

[73]  Wayne Hu Crossing the phantom divide: Dark energy internal degrees of freedom , 2004, astro-ph/0410680.

[74]  R. Nichol,et al.  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[75]  R. Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004, astro-ph/0407214.

[76]  Xinmin Zhang,et al.  Dark energy constraints from the cosmic age and supernova , 2004, astro-ph/0404224.

[77]  J. Lesgourgues,et al.  Current cosmological bounds on neutrino masses and relativistic relics , 2004, hep-ph/0402049.

[78]  G. Raffelt,et al.  Cosmological mass limits on neutrinos, axions, and other light particles , 2003, hep-ph/0312154.

[79]  V. Barger,et al.  Neutrino mass limits from SDSS, 2dFGRS and WMAP , 2003, hep-ph/0312065.

[80]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[81]  S. Bridle,et al.  A preference for a non-zero neutrino mass from cosmological data , 2003, astro-ph/0306386.

[82]  S. Hannestad Neutrino masses and the number of neutrino species from WMAP and 2dFGRS , 2003, astro-ph/0303076.

[83]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003, astro-ph/0302225.

[84]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[85]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[86]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[87]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[88]  D. Madgwick,et al.  New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey. , 2002, Physical review letters.

[89]  R. Sheth,et al.  PTHALOS: a fast method for generating mock galaxy distributions , 2001, astro-ph/0106120.

[90]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[91]  P. Steinhardt,et al.  Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration , 2000, Physical review letters.

[92]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[93]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[94]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[95]  A. Heavens,et al.  The non-linear redshift-space power spectrum of galaxies , 1998, astro-ph/9808016.

[96]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[97]  S. Cole,et al.  Modelling the redshift-space distortion of galaxy clustering , 1997, astro-ph/9707186.

[98]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[99]  A. Dolgov,et al.  Neutrinos in cosmology , 1996, hep-ph/9602294.

[100]  J. Frieman,et al.  Loop corrections in nonlinear cosmological perturbation theory , 1995, astro-ph/9509047.

[101]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[102]  B. Jain,et al.  Second-Order Power Spectrum and Nonlinear Evolution at High Redshift , 1993, astro-ph/9311070.

[103]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[104]  Sasaki,et al.  Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields. , 1992, Physical review. D, Particles and fields.

[105]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[106]  P. Peebles,et al.  Cosmology with a Time Variable Cosmological Constant , 1988 .

[107]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[108]  R. Juszkiewicz On the evolution of cosmological adiabatic perturbations in the weakly non-linear regime , 1981 .

[109]  B. Warner,et al.  Observations of Rapid Blue Variables–III HL TAU-76 , 1972 .

[110]  J. C. Jackson A Critique of Rees's Theory of Primordial Gravitational Radiation , 1972, 0810.3908.

[111]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .