On the Implementation of the Linearly Constrained Minimum Variance Beamformer

The linearly constrained minimum variance (LCMV) method, which allows multiple linear constraints, is an extension of the classical minimum variance distortionless response filter. Depending on the spatial filter length and the desired frequency grid, a direct computation of the resulting spatial beam pattern may be prohibitive. This brief exploits the rich structure of the LCMV expression to find a nonrecursive computationally efficient implementation of the LCMV beamformer with fixed constraints. The implementation is formed via the use of the matrix inversion lemma and the fast Fourier transform. Numerical simulations indicate a dramatic computational gain, especially for fine frequency grids and multiple constraints

[1]  S. Weiss,et al.  Constrained adaptive broadband beamforming algorithm in frequency domain , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.

[2]  Barry D. Van Veen,et al.  A modular structure for implementation of linearly constrained minimum variance beamformers , 1991, IEEE Trans. Signal Process..

[3]  Petre Stoica,et al.  Capon estimation of covariance sequences , 1998 .

[4]  T. T. Wang,et al.  The segmented chirp Z-transform and its application in spectrum analysis , 1990 .

[5]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[6]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[7]  M. Moonen,et al.  MVDR beamforming and generalized sidelobe cancellation based on inverse updating with residual extraction , 2000 .

[8]  S. Werner,et al.  On the equivalence of RLS implementations of LCMV and GSC processors , 2003, IEEE Signal Processing Letters.

[9]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[10]  José Antonio Apolinário,et al.  The constrained conjugate gradient algorithm , 2000, IEEE Signal Processing Letters.

[11]  C. Sidney Burrus,et al.  Efficient computation of the DFT with only a subset of input or output points , 1993, IEEE Trans. Signal Process..

[12]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[13]  João Marcos Travassos Romano,et al.  A fast least-squares algorithm for linearly constrained adaptive filtering , 1996, IEEE Trans. Signal Process..

[14]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .