Message-Passing Algorithms for Non-Linear Nodes and Data Compression

The use of parity-check gates in information theory has proved to be very efficient. In particular, error correcting codes based on parity checks over low-density graphs show excellent performances. Another basic issue of information theory, namely data compression, can be addressed in a similar way by a kind of dual approach. The theoretical performance of such a parity source coder can attain the optimal limit predicted by the general rate-distortion theory. However, in order to turn this approach into an efficient compression code (with fast encoding/decoding algorithms) one must depart from parity checks and use some general random gates. By taking advantage of analytical approaches from the statistical physics of disordered systems and SP-like message passing algorithms, we construct a compressor based on low-density non-linear gates with a very good theoretical and practical performance.

[1]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[2]  Giorgio Parisi,et al.  Analytic and Algorithmic Solution of Random , 2002 .

[3]  M. Mézard,et al.  Survey propagation: An algorithm for satisfiability , 2005 .

[4]  Toby Berger,et al.  Lossy Source Coding , 1998, IEEE Trans. Inf. Theory.

[5]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[6]  Shlomo Shamai,et al.  A new data compression algorithm for sources with memory based on error correcting codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[7]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[8]  Michael Horstein,et al.  Review of 'Low-Density Parity-Check Codes' (Gallager, R. G.; 1963) , 1964, IEEE Transactions on Information Theory.

[9]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[10]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[11]  Rémi Monasson,et al.  THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .

[12]  Frederick Jelinek Tree encoding of memoryless time-discrete sources with a fidelity criterion , 1969, IEEE Trans. Inf. Theory.

[13]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[14]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  H. Yamamoto,et al.  A coding theorem for lossy data compression by LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[16]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.

[17]  Riccardo Zecchina,et al.  Lossy data compression with random gates. , 2005, Physical review letters.

[18]  Ying Zhao,et al.  Compression of binary memoryless sources using punctured turbo codes , 2002, IEEE Communications Letters.

[19]  Source Coder The theoretical capacity of the Parity , 2005 .

[20]  Riccardo Zecchina,et al.  Source coding by efficient selection of ground-state clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[22]  P. Talavera,et al.  Radiative corrections to $K_{\ell 3}$ decays , 2001 .

[23]  Riccardo Zecchina,et al.  Minimizing energy below the glass thresholds. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[25]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[26]  Daniel A. Spielman,et al.  The Complexity of Error-Correcting Codes , 1997, FCT.

[27]  G. Parisi A backtracking survey propagation algorithm for K-satisfiability , 2003, cond-mat/0308510.

[28]  Y. Kabashima,et al.  Statistical mechanics of lossy data compression using a nonmonotonic perceptron. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .