Message-Passing Algorithms for Non-Linear Nodes and Data Compression
暂无分享,去创建一个
[1] Abraham Lempel,et al. A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.
[2] Giorgio Parisi,et al. Analytic and Algorithmic Solution of Random , 2002 .
[3] M. Mézard,et al. Survey propagation: An algorithm for satisfiability , 2005 .
[4] Toby Berger,et al. Lossy Source Coding , 1998, IEEE Trans. Inf. Theory.
[5] Ian H. Witten,et al. Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..
[6] Shlomo Shamai,et al. A new data compression algorithm for sources with memory based on error correcting codes , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).
[7] Frans M. J. Willems,et al. The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.
[8] Michael Horstein,et al. Review of 'Low-Density Parity-Check Codes' (Gallager, R. G.; 1963) , 1964, IEEE Transactions on Information Theory.
[9] David L. Neuhoff,et al. Quantization , 2022, IEEE Trans. Inf. Theory.
[10] Nicolas Sourlas,et al. Spin-glass models as error-correcting codes , 1989, Nature.
[11] Rémi Monasson,et al. THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .
[12] Frederick Jelinek. Tree encoding of memoryless time-discrete sources with a fidelity criterion , 1969, IEEE Trans. Inf. Theory.
[13] 西森 秀稔. Statistical physics of spin glasses and information processing : an introduction , 2001 .
[14] M. Mézard,et al. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] H. Yamamoto,et al. A coding theorem for lossy data compression by LDPC codes , 2002, Proceedings IEEE International Symposium on Information Theory,.
[16] A. Montanari. The glassy phase of Gallager codes , 2001, cond-mat/0104079.
[17] Riccardo Zecchina,et al. Lossy data compression with random gates. , 2005, Physical review letters.
[18] Ying Zhao,et al. Compression of binary memoryless sources using punctured turbo codes , 2002, IEEE Communications Letters.
[19] Source Coder. The theoretical capacity of the Parity , 2005 .
[20] Riccardo Zecchina,et al. Source coding by efficient selection of ground-state clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[21] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[22] P. Talavera,et al. Radiative corrections to $K_{\ell 3}$ decays , 2001 .
[23] Riccardo Zecchina,et al. Minimizing energy below the glass thresholds. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[25] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[26] Daniel A. Spielman,et al. The Complexity of Error-Correcting Codes , 1997, FCT.
[27] G. Parisi. A backtracking survey propagation algorithm for K-satisfiability , 2003, cond-mat/0308510.
[28] Y. Kabashima,et al. Statistical mechanics of lossy data compression using a nonmonotonic perceptron. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] H. Nishimori. Statistical Physics of Spin Glasses and Information Processing , 2001 .