Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly

Three classes of neurons form synapses in the antennal lobe of Drosophila, the insect counterpart of the vertebrate olfactory bulb: olfactory receptor neurons, projection neurons, and inhibitory local interneurons. We have targeted a genetically encoded optical reporter of synaptic transmission to each of these classes of neurons and visualized population responses to natural odors. The activation of an odor-specific ensemble of olfactory receptor neurons leads to the activation of a symmetric ensemble of projection neurons across the glomerular synaptic relay. Virtually all excited glomeruli receive inhibitory input from local interneurons. The extent, odor specificity, and partly interglomerular origin of this input suggest that inhibitory circuits assemble combinatorially during odor presentations. These circuits may serve as dynamic templates that extract higher order features from afferent activity patterns.

[1]  R. Menzel,et al.  The glomerular code for odor representation is species specific in the honeybee Apis mellifera , 1999, Nature Neuroscience.

[2]  Andrey Rzhetsky,et al.  A Spatial Map of Olfactory Receptor Expression in the Drosophila Antenna , 1999, Cell.

[3]  T. Bonhoeffer,et al.  Tuning and Topography in an Odor Map on the Rat Olfactory Bulb , 2001, The Journal of Neuroscience.

[4]  G. Westbrook,et al.  Glomerulus-Specific Synchronization of Mitral Cells in the Olfactory Bulb , 2001, Neuron.

[5]  A. Chess,et al.  Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe , 2000, Nature Neuroscience.

[6]  G. Shepherd,et al.  Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. , 1968, Journal of neurophysiology.

[7]  K. Ikeda,et al.  Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster , 1983, The Journal of cell biology.

[8]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[9]  E. Buchner Genes expressed in the adult brain of Drosophila and effects of their mutations on behavior: a survey of transmitter- and second messenger-related genes. , 1991, Journal of neurogenetics.

[10]  David T. Suzuki,et al.  Temperature-sensitive mutations in Drosophila melanogaster , 1970, Molecular and General Genetics MGG.

[11]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[12]  A. Grinvald,et al.  Spatio-Temporal Dynamics of Odor Representations in the Mammalian Olfactory Bulb , 2002, Neuron.

[13]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[14]  G. Shepherd,et al.  Functional organization of rat olfactory bulb analysed by the 2‐deoxyglucose method , 1979, The Journal of comparative neurology.

[15]  John R. Carlson,et al.  A Novel Family of Divergent Seven-Transmembrane Proteins Candidate Odorant Receptors in Drosophila , 1999, Neuron.

[16]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[17]  Roger Y. Tsien,et al.  Improved green fluorescence , 1995, Nature.

[18]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[19]  R. Burgess,et al.  Identification and characterization of Drosophila genes for synaptic vesicle proteins , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  F. Jackson,et al.  Drosophila GABAergic Systems: Sequence and Expression of Glutamic Acid Decarboxylase , 1990, Journal of neurochemistry.

[21]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[22]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[23]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[24]  A. Grinvald Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. , 1985, Annual review of neuroscience.

[25]  S. Sachse,et al.  Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. , 2002, Journal of neurophysiology.

[26]  G. Laurent,et al.  Short-term memory in olfactory network dynamics , 1999, Nature.

[27]  G. Laurent,et al.  Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies , 1996, Science.

[28]  K. Ikeda,et al.  Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1 , 1983, The Journal of cell biology.

[29]  J. Hopfield,et al.  Modeling the olfactory bulb and its neural oscillatory processings , 1989, Biological Cybernetics.

[30]  R. Friedrich,et al.  Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging , 1997, Neuron.

[31]  W. Gao,et al.  Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears , 2000, Nature Neuroscience.

[32]  A. Chess,et al.  Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. , 1999, Genomics.

[33]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[34]  Naoshige Uchida,et al.  Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features , 2000, Nature Neuroscience.

[35]  Reinhard F. Stocker,et al.  The organization of the chemosensory system in Drosophila melanogaster: a rewiew , 2004, Cell and Tissue Research.

[36]  G Laurent,et al.  Odor Images and Tunes , 1996, Neuron.

[37]  J. Isaacson,et al.  Olfactory Reciprocal Synapses: Dendritic Signaling in the CNS , 1998, Neuron.

[38]  J S Kauer,et al.  Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation. , 1995, Journal of neurophysiology.

[39]  J. Hildebrand,et al.  Synaptic organization of the uniglomerular projection neurons of the antennal lobe of the moth Manduca sexta: A laser scanning confocal and electron microscopic study , 1997, The Journal of comparative neurology.

[40]  G. Laurent A systems perspective on early olfactory coding. , 1999, Science.

[41]  L. C. Katz,et al.  Optical Imaging of Odorant Representations in the Mammalian Olfactory Bulb , 1999, Neuron.

[42]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[43]  R. Menzel,et al.  Representations of odours and odour mixtures visualized in the honeybee brain , 1997, Nature.

[44]  L. Cohen,et al.  Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb , 2001, Neuron.

[45]  Hong Lei,et al.  Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons , 2002, Nature Neuroscience.

[46]  Gordon M. Shepherd,et al.  The Olfactory Bulb , 1988 .

[47]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[48]  K. Mori,et al.  The olfactory bulb: coding and processing of odor molecule information. , 1999, Science.

[49]  T. A. Ryan,et al.  Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system , 2000, Nature Cell Biology.

[50]  S. Benzer BEHAVIORAL MUTANTS OF Drosophila ISOLATED BY COUNTERCURRENT DISTRIBUTION. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Malun,et al.  Inventory and distribution of synapses of identified uniglomerular projection neurons in the antennal lobe of Periplaneta americana , 1991, The Journal of comparative neurology.

[52]  Richard W. Hamming,et al.  Coding and Information Theory , 1980 .

[53]  Erich Buchner,et al.  [3H]2-Deoxyglucose mapping of odor-induced neuronal activity in the antennal lobes of Drosophila melanogaster , 1984, Brain Research.

[54]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[55]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[56]  J S Kauer,et al.  Imaging and coding in the olfactory system. , 2001, Annual review of neuroscience.

[57]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[58]  Alexander M. van der Bliek,et al.  Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic , 1991, Nature.

[59]  K. Holthoff,et al.  Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. , 2000, Methods in enzymology.

[60]  J. Rothman,et al.  Patterns of synaptic activity in neural networks recorded by light emission from synaptolucins. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Laurent,et al.  Encoding of Olfactory Information with Oscillating Neural Assemblies , 1994, Science.

[62]  P. De Camilli,et al.  Dynamin and its partners: a progress report. , 1998, Current opinion in cell biology.

[63]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[64]  G. Shepherd,et al.  Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. , 1997, Annual review of neuroscience.

[65]  R. Nicoll,et al.  Self-excitation of olfactory bulb neurones , 1982, Nature.

[66]  R. Menzel,et al.  Associative learning modifies neural representations of odors in the insect brain , 1999, Nature Neuroscience.

[67]  B. Zemelman,et al.  Genetic schemes and schemata in neurophysiology , 2001, Current Opinion in Neurobiology.

[68]  S Falkow,et al.  FACS-optimized mutants of the green fluorescent protein (GFP). , 1996, Gene.

[69]  G. Laurent,et al.  Odor encoding as an active, dynamical process: experiments, computation, and theory. , 2001, Annual review of neuroscience.

[70]  P. Hiesinger,et al.  Three‐dimensional reconstruction of the antennal lobe in Drosophila melanogaster , 1999, The Journal of comparative neurology.

[71]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.