Numerical analysis of crack propagation in tension specimens of concrete considered as a 2D multicracked granular composite

A numerical model is presented to study the mechanisms of microcrack propagation in concrete, the load-displacement response and the trajectories of the crack propagation in specimens under displacement control. The microstructure of concrete in this model is represented by a matrix, inclusions and pre-existing microcracks introduced around the inclusions. Both the matrix and the inclusions are assumed to be elastic, homogeneous brittle materials. The stiffness of the inclusions is considered to be three times higher than that of the matrix. Crack propagation in the numerically-generated concrete is controlled by fracture mechanics-based criteria and is calculated through the finite element method. The influence of the microstructure of concrete, the size and the distribution of grains, the properties of the interfacial zone between grains and the matrix, as well as the boundary conditions, on final crack patterns and load-displacement responses are investigated. The different appearance of the numerical load-displacement curves exhibiting the quasi-brittle behaviour observed in experiments is explained in terms of several points of view, especially the dynamic crack propagation.RésuméOn présente un modèle numérique que l’on applique à l’étude des mécanismes de la microfissuration du béton, de la réponse en termes de courbe effort-déplacement et des trajectoires de propagation des fissures dans des éprouvettes en déplacement imposé. La microstructure du béton est représenté par une matrice, des inclusions et des microfissures introduites dans la matrice autour des inclusions. Dans ce modèle, la matrice et les inclusions sont considérées comme étant homogènes, élastiques et fragiles. La rigidité des inclusions est trois fois plus grande que celle de la matrice. La propagation des microfissures dans ce modèle numérique du béton est effectuée selon les critères de la mécanique linéaire élastique de la rupture par la méthode des éléments finis. On étudie l’influence de la microstructure du béton, notamment des auréoles de transition, de la taille et la distribution des grains, ainsi que des conditions aux limites imposées aux éprouvettes sur le trajet des fissures et sur l’allure des courbes effort-déplacement. Les résultats obtenus mettent en évidence le comportement semi-fragile observé lors des essais. Ce comportement a été expliqué par différentes causes et notamment par la propagation dynamique des fissures.

[1]  H.E.J.G. Schlangen,et al.  Experimental and numerical analysis of fracture processes in concrete : proefschrift , 1993 .

[2]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[3]  P. Rossi,et al.  Numerical modelling of concrete cracking based on a stochastic approach , 1987 .

[4]  J. Mier,et al.  Simple lattice model for numerical simulation of fracture of concrete materials and structures , 1992 .

[5]  Sandro Dei Poli,et al.  TENSILE BEHAVIOR OF CONCRETE , 1987 .

[6]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[7]  M. Tabbara,et al.  RANDOM PARTICLE MODEL FOR FRACTURE OF AGGREGATE OR FIBER COMPOSITES , 1990 .

[8]  Farhad Ansari STRESS-STRAIN RESPONSE OF MICROCRACKED CONCRETE IN DIRECT TENSION. , 1987 .

[9]  Y. Berthaud,et al.  Matériaux hétérogènes: analyse expérimentale de la localisation et de l’influence de la taille des hétérogénéités sur le comportement en traction , 1993 .

[10]  A CONTINUUM THERMODYNAMICS APPROACH STUDYING MICROSTRUCTURAL EFFECTS ON THE NON­ LINEAR FRACTURE BEHAVIOUR OF CONCRETE SEEN AS MULTICRACKED GRANULAR COMPOSITE MATERIAL , 1995 .

[11]  R. de Borst,et al.  Analysis of concrete fracture in “direct” tension , 1989 .

[12]  H. Schorn,et al.  3-D-Modeling of Process Zone in Concrete by Numerical Simulation , 1989 .

[13]  D. M. Tracey,et al.  The natural isoparametric triangle versus collapsed quadrilateral for elastic crack analysis , 1976, International Journal of Fracture.

[14]  Eiki Yamaguchi,et al.  MICROCRACK PROPAGATION STUDY OF CONCRETE UNDER COMPRESSION , 1991 .

[15]  Nicholas J. Burt,et al.  Progressive Failure in a Model Heterogeneous Medium , 1977 .

[16]  Pieter Engbert Roelfstra,et al.  A numerical approach to investigate the properties of concrete , 1989 .

[17]  H. W. Reinhardt,et al.  Experimental determination of crack softening characteristics of normalweight and lightweight concrete , 1986 .

[18]  J. P. Berry Some kinetic considerations of the Griffith criterion for fracture—I: Equations of motion at constant force , 1960 .

[19]  J.G.M. van Mier,et al.  Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging , 1991 .

[20]  Surendra P. Shah,et al.  Softening Response of Plain Concrete in Direct Tension , 1985 .

[21]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[22]  N. Muskhelishvili Some basic problems of the mathematical theory of elasticity , 1953 .

[23]  J. Mier,et al.  Geometrical and structural aspects of concrete fracture , 1990 .

[24]  Amor Guidoum Simulation numérique 3D des comportements des bétons en tant que composites granulaires , 1995 .

[25]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .