Transient analysis of flexible multi-body systems. Part II: application to aircraft landing

This investigation presents a method for transient analysis of a large-scale multi-body aircraft consisting of interconnected rigid and flexible bodies that undergo large angular rotations. Elastic components of the aircraft are discretized using the finite element method. The system equations of motion and nonlinear algebraic constraint equations describing joints between different components are written in the Lagrangian formulation using a finite set of coupled reference and modal coordinates. The system differential equations of motion and algebraic constraint equations are computer-generated and integrated forward in time using an explicit-implicit direct numerical integration algorithm coupled with a Newton-Raphson type iteration in order to check on constraint violations. Impact and intermittent motion events are accounted for by using a generalized momentum balance that predict jump discontinuities in the generalized velocities as well as jump discontinuities in the system reaction forces. The formulation presented and the computer program developed are used to simulate the impact between the landing gear and the runway. The method is also used to predict the dynamic behavior of the aircraft during the traverse of an abrupt elevation change in the runway.