Performance of generalized predictive control with on-line model order determination for a hydraulic robotic manipulator

The research results described present the performance of the Generalized Predictive Control (GPC) algorithm with a changing estimator and predictor model order for a specific application. The application is a hydraulically actuated heavy duty manipulator. Hydraulically actuated robotic manipulators, used in the large resource based industries, have a complex dynamic response in which, primarily due to the hydraulic actuator subsystems, the order of the dynamic model is not initially known and can change as the manipulator is operated. A nonlinear simulation model of the manipulator system is utilized in the work and the GPC controller is implemented with a CARIMA estimator together with an on-line, gradient based estimator model order determination technique. The results given show that with proper use of the order determination technique cost function and tuning of the GPC parameters, good performance and stability can be achieved

[1]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  Edward Davison,et al.  The design of controllers for the multivariable robust servomechanism problem using parameter optimization methods , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[4]  Rolf Isermann Practical Aspects of Process Identification , 1979 .

[5]  George S. Axelby About this and future issues , 1969, Autom..

[6]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[7]  Nariman Sepehri,et al.  Generalized predictive control of a robotic manipulator with hydraulic actuators , 1992, Robotica.

[8]  Dov Wulich,et al.  Order estimation of linear time invariant system , 1986 .

[9]  Roberto Guidorzi,et al.  Invariants and canonical forms for systems structural and parametric identification , 1981, Autom..

[10]  E. Davison,et al.  On "A method for simplifying linear dynamic systems" , 1966 .

[11]  Madan M. Gupta,et al.  Fuzzy logic controllers??A perspective , 1980 .

[12]  J. Watton The Dynamic Performance of an Electrohydraulic Servovalve/Motor System With Transmission Line Effects , 1987 .

[13]  D. Grant Fisher,et al.  A recursive algorithm for simultaneous identification of model order and parameters , 1990, IEEE Trans. Acoust. Speech Signal Process..

[14]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[15]  R. Guidorzi Canonical structures in the identification of multivariable systems , 1975, Autom..

[16]  Pentti Vähä Application of parameter adaptive approach to servo control of a hydraulic manipulator , 1988 .

[17]  Anat Kotzev,et al.  Automatic model structure determination for adaptive control , 1992 .

[18]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[19]  Lennart Ljung,et al.  On-line structure selection for multivariable state-space models , 1982, Autom..

[20]  C. S. G. Lee,et al.  Robotics: Control, Sensing, Vision, and Intelligence , 1987 .

[21]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[22]  D. Grant Fisher,et al.  MIMO System Identification using Augmented UD Factorization , 1991, 1991 American Control Conference.

[23]  Demetrios G. Lainiotis,et al.  AR model identification with unknown process order , 1990, IEEE Trans. Acoust. Speech Signal Process..

[24]  Bo Egardt,et al.  Stability of Adaptive Controllers , 1979 .