Tip-enhanced Raman spectroscopy - from early developments to recent advances.

An analytical technique operating at the nanoscale must be flexible regarding variable experimental conditions while ideally also being highly specific, extremely sensitive, and spatially confined. In this respect, tip-enhanced Raman scattering (TERS) has been demonstrated to be ideally suited to, e.g., elucidating chemical reaction mechanisms, determining the distribution of components and identifying and localizing specific molecular structures at the nanometre scale. TERS combines the specificity of Raman spectroscopy with the high spatial resolution of scanning probe microscopies by utilizing plasmonic nanostructures to confine the incident electromagnetic field and increase it by many orders of magnitude. Consequently, molecular structure information in the optical near field that is inaccessible to other optical microscopy methods can be obtained. In this general review, the development of this still-young technique, from early experiments to recent achievements concerning inorganic, organic, and biological materials, is addressed. Accordingly, the technical developments necessary for stable and reliable AFM- and STM-based TERS experiments, together with the specific properties of the instruments under different conditions, are reviewed. The review also highlights selected experiments illustrating the capabilities of this emerging technique, the number of users of which has steadily increased since its inception in 2000. Finally, an assessment of the frontiers and new concepts of TERS, which aim towards rendering it a general and widely applicable technique that combines the highest possible lateral resolution and extreme sensitivity, is provided.

[1]  Rui Zhang,et al.  Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. , 2015, Nature nanotechnology.

[2]  Teng-Xiang Huang,et al.  Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. , 2015, Nanoscale.

[3]  Volker Deckert,et al.  Ultraflat transparent gold nanoplates--ideal substrates for tip-enhanced Raman scattering experiments. , 2009, Small.

[4]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[5]  Renato Zenobi,et al.  Tip-Enhanced Raman Spectroscopy Can See More: The Case of Cytochrome c , 2008 .

[6]  Marcus Sackrow,et al.  Imaging nanometre-sized hot spots on smooth au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[8]  B. Pettinger,et al.  High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum. , 2007, The Review of scientific instruments.

[9]  Naresh Kumar,et al.  Probing individual point defects in graphene via near-field Raman scattering. , 2015, Nanoscale.

[10]  D. Barchiesi,et al.  Light depolarization induced by metallic tips in apertureless near-field optical microscopy and tip-enhanced Raman spectroscopy , 2008, Nanotechnology.

[11]  M. Raschke,et al.  Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique , 2010, Analytical and bioanalytical chemistry.

[12]  T. Komeda,et al.  Tip-enhanced Raman spectroscopy of 4,4′-bipyridine and 4,4′-bipyridine N,N'-dioxide adsorbed on gold thin films , 2013 .

[13]  Dhabih V. Chulhai,et al.  Intramolecular insight into adsorbate-substrate interactions via low-temperature, ultrahigh-vacuum tip-enhanced Raman spectroscopy. , 2014, Journal of the American Chemical Society.

[14]  M. Schmitt,et al.  Deep-UV surface-enhanced Raman scattering , 2007 .

[15]  Hongxing Xu,et al.  Tip-Enhanced Ultrasensitive Stokes and Anti-Stokes Raman Spectroscopy in High Vacuum , 2013, Plasmonics.

[16]  Volker Deckert,et al.  Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. , 2009, Physical chemistry chemical physics : PCCP.

[17]  Richard P Van Duyne,et al.  Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy. , 2015, Nano letters.

[18]  S. Kawata,et al.  Subnanometric near-field Raman investigation in the vicinity of a metallic nanostructure. , 2009, Physical review letters.

[19]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[20]  Lukas Novotny,et al.  Nanoscale optical imaging of excitons in single-walled carbon nanotubes. , 2005, Nano letters.

[21]  Sheng-Chao Huang,et al.  Tip-enhanced Raman spectroscopy: tip-related issues , 2015, Analytical and Bioanalytical Chemistry.

[22]  Prashant Nagpal,et al.  Three-dimensional plasmonic nanofocusing. , 2010, Nano letters.

[23]  Y. Saito,et al.  Control of near-field polarizations for nanoscale molecular orientational imaging , 2016 .

[24]  Ehrenfried Zschech,et al.  Nano-raman spectroscopy with metallized atomic force microscopy tips on strained silicon structures , 2007 .

[25]  Satoshi Kawata,et al.  3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. , 2014, Methods.

[26]  D. Spitzer,et al.  High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  Volker Deckert,et al.  Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies , 2016, Analytical chemistry.

[28]  R. Zenobi,et al.  Methods for molecular nanoanalysis , 2006 .

[29]  I. Notingher,et al.  In-situ fabrication of gold nanoparticle functionalized probes for tip-enhanced Raman spectroscopy by dielectrophoresis , 2016 .

[30]  C. Röcker,et al.  An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy. , 2006, Biopolymers.

[31]  D. Zahn,et al.  Mechanical properties and applications of custom-built gold AFM cantilevers , 2016 .

[32]  Weihua Zhang,et al.  Near-Field Heating, Annealing, and Signal Loss in Tip-Enhanced Raman Spectroscopy , 2008 .

[33]  A. Vecchione,et al.  Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes , 2016, Scientific Reports.

[34]  S. Kawata,et al.  Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. , 2011, Nano letters.

[35]  V. Deckert,et al.  Aromatic Amino Acid Monolayers Sandwiched between Gold and Silver: A Combined Tip-Enhanced Raman and Theoretical Approach† , 2010 .

[36]  M. R. Wagner,et al.  Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering. , 2013, Nano letters.

[37]  Volker Deckert,et al.  Distinction of nucleobases – a tip-enhanced Raman approach , 2011, Beilstein journal of nanotechnology.

[38]  Jakub Bielecki,et al.  Molecular characterization of DNA double strand breaks with tip-enhanced Raman scattering. , 2014, Angewandte Chemie.

[39]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[40]  Yi Zhang,et al.  Constant current etching of gold tips suitable for tip-enhanced Raman spectroscopy. , 2012, The Review of scientific instruments.

[41]  D. Talaga,et al.  Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy , 2009 .

[42]  M. Salakhov,et al.  Electrochemical design of plasmonic nanoantennas for tip-enhanced optical spectroscopy and imaging performance , 2015 .

[43]  M. Workentin,et al.  Tip-Enhanced Raman Spectroscopy of Self-Assembled Thiolated Monolayers on Flat Gold Nanoplates Using Gaussian-Transverse and Radially Polarized Excitations , 2013 .

[44]  Y. Fujita,et al.  Nano-scale characterization of binary self-assembled monolayers under an ambient condition with STM and TERS. , 2014, Chemical communications.

[45]  I. Lednev,et al.  Structural Characterization of Insulin Fibril Surfaces using Tip Enhanced Raman Spectroscopy (TERS) , 2013 .

[46]  Yan Yan,et al.  Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava (Manihot esculenta Crantz) , 2018, Front. Physiol..

[47]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[48]  C. Nauenheim,et al.  Note: tip enhanced Raman spectroscopy with objective scanner on opaque samples. , 2012, The Review of scientific instruments.

[49]  Martin A. B. Hedegaard,et al.  Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils , 2016, Scientific Reports.

[50]  Volker Deckert,et al.  High resolution spectroscopy reveals fibrillation inhibition pathways of insulin , 2016, Scientific Reports.

[51]  Martin A. B. Hedegaard,et al.  Laterally resolved and direct spectroscopic evidence of nanometer-sized lipid and protein domains on a single cell. , 2011, Small.

[52]  Tim H. Taminiau,et al.  λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence , 2007 .

[53]  Alistair Elfick,et al.  Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy. , 2006, The journal of physical chemistry. B.

[54]  Volker Deckert,et al.  Controlled Formation of Isolated Silver Islands for Surface-Enhanced Raman Scattering , 2000 .

[55]  Maria Laura Coluccio,et al.  Plasmonic 3D-structures based on silver decorated nanotips for biological sensing , 2016 .

[56]  Giovanni Fanchini,et al.  Tip-enhanced Raman spectroscopy of graphene-like and graphitic platelets on ultraflat gold nanoplates. , 2015, Physical chemistry chemical physics : PCCP.

[57]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[58]  V. Sandoghdar,et al.  A single gold particle as a probe for apertureless scanning near‐field optical microscopy , 2001, Journal of microscopy.

[59]  Jian-feng Li,et al.  Chemical Production of Thin Protective Coatings on Optical Nanotips for Tip-Enhanced Raman Spectroscopy , 2016 .

[60]  S. Kawata,et al.  Highly reproducible tip‐enhanced Raman scattering using an oxidized and metallized silicon cantilever tip as a tool for everyone , 2012 .

[61]  Thomas Bocklitz,et al.  Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect. , 2016, Nanoscale.

[62]  Sang‐Hyun Oh,et al.  Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing , 2016, Nano letters.

[63]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[64]  R. Zenobi,et al.  Missing Amide I Mode in Gap-Mode Tip-Enhanced Raman Spectra of Proteins , 2012 .

[65]  Weitao Su,et al.  Visualizing graphene edges using tip-enhanced Raman spectroscopy , 2013 .

[66]  I. Notingher,et al.  Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips. , 2005, The journal of physical chemistry. B.

[67]  R. Ossikovski,et al.  Molecular Bending at the Nanoscale Evidenced by Tip-Enhanced Raman Spectroscopy in Tunneling Mode on Thiol Self-Assembled Monolayers , 2016 .

[68]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[69]  C. Barrios,et al.  Highly Stable, Protected Plasmonic Nanostructures for Tip Enhanced Raman Spectroscopy , 2009 .

[70]  C. L. Jahncke,et al.  The electric field at the apex of a near‐field probe: implications for nano‐Raman spectroscopy , 2003 .

[71]  Volker Deckert,et al.  Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering. , 2016, Analytical chemistry.

[72]  J. Loos,et al.  Etchant-based design of gold tip apexes for plasmon-enhanced Raman spectromicroscopy. , 2017, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[73]  J. Dellith,et al.  A classical description of subnanometer resolution by atomic features in metallic structures. , 2017, Nanoscale.

[74]  Markus B. Raschke,et al.  Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy , 2010 .

[75]  Florian Libisch,et al.  Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. , 2013, Nano letters.

[76]  R. Zenobi,et al.  Towards chemical analysis of nanostructures in biofilms I: imaging of biological nanostructures , 2008, Analytical and bioanalytical chemistry.

[77]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in one-dimensional systems. , 2009, Physical review letters.

[78]  Christopher C Davis,et al.  Resolution enhancement of a surface immersion microscope near the plasmon resonance. , 2005, Optics letters.

[79]  L. Novotný,et al.  Near‐field Raman spectroscopy using a sharp metal tip , 2003, Journal of microscopy.

[80]  Zachary D. Schultz,et al.  Selective Detection of RGD-Integrin Binding in Cancer Cells Using Tip Enhanced Raman Scattering Microscopy. , 2016, Analytical chemistry.

[81]  Zhendong Zhu,et al.  Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy , 2013 .

[82]  R. Isticato,et al.  Nanoscale chemical imaging of Bacillus subtilis spores by combining tip-enhanced Raman scattering and advanced statistical tools. , 2014, ACS nano.

[83]  Honghong Chen,et al.  Label-free mapping of osteopontin adsorption to calcium oxalate monohydrate crystals by tip-enhanced Raman spectroscopy. , 2012, Journal of the American Chemical Society.

[84]  Satoshi Kawata,et al.  Deep-UV biological imaging by lanthanide ion molecular protection. , 2016, Biomedical optics express.

[85]  S. Kawata,et al.  Tip-enhanced Raman spectroscopy for nanoscale strain characterization , 2009, Analytical and bioanalytical chemistry.

[86]  H. K. Wickramasinghe,et al.  Billion-fold increase in tip-enhanced Raman signal. , 2014, ACS nano.

[87]  Gerhard Ertl,et al.  Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy , 2000 .

[88]  Valentinas Snitka,et al.  Novel gold cantilever for nano-Raman spectroscopy of graphene , 2011 .

[89]  Rui Wang,et al.  Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes. , 2010, Applied optics.

[90]  J. Popp,et al.  Characterizing cytochrome c states--TERS studies of whole mitochondria. , 2011, Chemical communications.

[91]  S. Kawata,et al.  Fabrication of Silver Probes for Localized Plasmon Excitation in Near-field Raman Spectroscopy , 2005 .

[92]  Lukas Novotny,et al.  Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. , 2012, ACS nano.

[93]  Masanori Fujinami,et al.  Tip-enhanced Raman Spectroscopy of Lipid Bilayers in Water with an Alumina- and Silver-coated Tungsten Tip , 2013, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[94]  S. Kawata,et al.  Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures , 2012 .

[95]  Volker Deckert,et al.  Tracking of nanoscale structural variations on a single amyloid fibril with tip‐enhanced Raman scattering , 2012, Journal of biophotonics.

[96]  Jürgen Popp,et al.  On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[97]  S. Kawata,et al.  Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule , 2004 .

[98]  R. Zenobi,et al.  Minimally invasive characterization of covalent monolayer sheets using tip-enhanced Raman spectroscopy. , 2015, ACS nano.

[99]  S. Kawata,et al.  Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy , 2007 .

[100]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[101]  Neil A. Anderson,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Optimal Configurations for Imaging Polarimeters: Impact of Image Noise and Systematic Errors , 2006 .

[102]  Razvigor Ossikovski,et al.  High resolution probing of multi wall carbon nanotubes by Tip Enhanced Raman Spectroscopy in gap-mode , 2009 .

[103]  S. Kawata,et al.  Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. , 2006, Nano letters.

[104]  J. Loos,et al.  Near-field optical taper antennas fabricated with a highly replicable ac electrochemical etching method , 2011, Nanotechnology.

[105]  Zhong-Qun Tian,et al.  Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips , 2007 .

[106]  R. V. Van Duyne,et al.  Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. , 2012, Nano letters.

[107]  Yukihiro Ozaki,et al.  Tip-Enhanced Raman Scattering of the Local Nanostructure of Epitaxial Graphene Grown on 4H-SiC (0001̅) , 2014 .

[108]  Rebecca L. Agapov,et al.  Protecting TERS probes from degradation: extending mechanical and chemical stability , 2013 .

[109]  Satoshi Kawata,et al.  Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell. , 2009, Journal of biomedical optics.

[110]  Leann Tilley,et al.  Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. , 2011, Nano letters.

[111]  F. Schreiber,et al.  Revealing nanoscale optical properties and morphology in perfluoropentacene films by confocal and tip-enhanced near-field optical microscopy and spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[112]  A. Mews,et al.  Optical imaging of CdSe nanowires with nanoscale resolution. , 2011, Angewandte Chemie.

[113]  M. Bonn,et al.  Amyloids: From molecular structure to mechanical properties , 2013 .

[114]  A. Saito,et al.  Nanoscale analysis of multiwalled carbon nanotube by tip-enhanced Raman spectroscopy , 2016 .

[115]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[116]  J. Kirkham,et al.  Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy , 2005 .

[117]  Hongxing Xu,et al.  Plasmon‐Driven Selective Reductions Revealed by Tip‐Enhanced Raman Spectroscopy , 2014 .

[118]  Achim Hartschuh,et al.  Tip-enhanced Raman spectroscopic imaging of localized defects in carbon nanotubes , 2010 .

[119]  Hongxing Xu,et al.  High-vacuum tip enhanced Raman spectroscopy , 2014 .

[120]  N. Dai,et al.  Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. , 2016, Chemical communications.

[121]  H. Uji‐i,et al.  A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering. , 2014, Chemical communications.

[122]  Yasuhiko Fujita,et al.  Remote excitation-tip-enhanced Raman scattering microscopy using silver nanowire , 2016 .

[123]  De‐Yin Wu,et al.  Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds. , 2014, The journal of physical chemistry letters.

[124]  Bhavya Sharma,et al.  Molecular plasmonics for nanoscale spectroscopy. , 2014, Chemical Society reviews.

[125]  Satoshi Kawata,et al.  Near-field enhanced Raman spectroscopy using side illumination optics , 2002 .

[126]  Hongxing Xu,et al.  Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. , 2013, Nanoscale.

[127]  P. R. Dunstan,et al.  Enhancement of lattice defect signatures in graphene and ultrathin graphite using tip-enhanced Raman spectroscopy , 2014 .

[128]  Seunghun Hong,et al.  Multilayered nano-prism vertex tips for tip-enhanced Raman spectroscopy and imaging. , 2013, The Analyst.

[129]  D. Erni,et al.  Highly efficient nano-tips with metal : dielectric coatings for tip-enhanced spectroscopy applications , 2008 .

[130]  G. Schatz,et al.  Ultrahigh-Vacuum Tip-Enhanced Raman Spectroscopy. , 2017, Chemical reviews.

[131]  Y. Ozaki,et al.  Micrometer-sized gold nanoplates: starch-mediated photochemical reduction synthesis and possibility of application to tip-enhanced Raman scattering (TERS). , 2012, Physical chemistry chemical physics : PCCP.

[132]  Fischer Uc,et al.  Observation of single-particle plasmons by near-field optical microscopy. , 1989 .

[133]  Ira W Levin,et al.  Tip-Enhanced Raman Spectroscopy and Imaging: An Apical Illumination Geometry , 2008, Applied spectroscopy.

[134]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy on azobenzene thiol self-assembled monolayers on Au(111) , 2009 .

[135]  Volker Deckert,et al.  Direct Base-to-Base Transitions in ssDNA Revealed by Tip-Enhanced Raman Scattering , 2016 .

[136]  A. Meixner,et al.  High NA particle‐ and tip‐enhanced nanoscale Raman spectroscopy with a parabolic‐mirror microscope , 2008, Journal of microscopy.

[137]  Tak W. Kee,et al.  Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy. , 2004, Optics letters.

[138]  Rui Zhang,et al.  Tip-Enhanced Raman Spectroscopic Imaging of Individual Carbon Nanotubes with Subnanometer Resolution. , 2016, Nano letters.

[139]  Satoshi Kawata,et al.  Optical antennas for tunable enhancement in tip-enhanced Raman spectroscopy imaging , 2015 .

[140]  Rebecca L. Agapov,et al.  Prolonged Blinking with TERS Probes , 2011 .

[141]  Yi Luo,et al.  Theoretical Modeling of Plasmon-Enhanced Raman Images of a Single Molecule with Subnanometer Resolution. , 2014, Journal of the American Chemical Society.

[142]  S. Kawata,et al.  Near-field scanning optical microscope with a metallic probe tip. , 1994, Optics letters.

[143]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[144]  Sabine Szunerits,et al.  Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles , 2014 .

[145]  Y. Ozaki,et al.  Tip-Enhanced Raman Spectroscopy Study of Local Interactions at the Interface of Styrene–Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites , 2013 .

[146]  Fabiana A. Caetano,et al.  Tip-enhanced Raman spectroscopy: plasmid-free vs. plasmid-embedded DNA. , 2016, The Analyst.

[147]  K. Mingard,et al.  Single-crystal gold tip for tip-enhanced Raman spectroscopya) , 2010 .

[148]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[149]  Dai Zhang,et al.  Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). , 2007, Journal of the American Chemical Society.

[150]  Hairong Zheng,et al.  In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy , 2012, Scientific Reports.

[151]  V. Deckert,et al.  Tip-enhanced Raman scattering studies of histidine on novel silver substrates , 2009 .

[152]  Y. Saito,et al.  Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole. , 2014, ACS nano.

[153]  R. Ossikovski,et al.  Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy , 2007 .

[154]  Y. Saito,et al.  Fabrication of Near-Field Plasmonic Tip by Photoreduction for Strong Enhancement in Tip-Enhanced Raman Spectroscopy , 2012 .

[155]  V. A. Apkarian,et al.  Isomerization of One Molecule Observed through Tip-Enhanced Raman Spectroscopy. , 2015, Nano letters.

[156]  R. Zenobi,et al.  Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. , 2013, ACS nano.

[157]  Mengtao Sun,et al.  High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope. , 2016, The Review of scientific instruments.

[158]  S. Kawata,et al.  Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy , 2003 .

[159]  J. Loos,et al.  High-Resolution Chemical Identification of Polymer Blend Thin Films Using Tip-Enhanced Raman Mapping , 2011 .

[160]  R. Ulbrich,et al.  Probe‐surface interaction in near‐field optical microscopy: The nonlinear bending force mechanism , 1996 .

[161]  F. Lagugné-Labarthet,et al.  Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. , 2013, Optics express.

[162]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[163]  Matthew M Adams,et al.  Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips. , 2006, Optics express.

[164]  B. Ren,et al.  Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching , 2004 .

[165]  Volker Deckert,et al.  Perspectives for spatially resolved molecular spectroscopy – Raman on the nanometer scale , 2008, Journal of biophotonics.

[166]  S. Kawata,et al.  Indium for Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering , 2014 .

[167]  B. Ren,et al.  Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. , 2004, Angewandte Chemie.

[168]  Zhilin Yang,et al.  Deep ultraviolet tip-enhanced Raman scattering. , 2011, Chemical communications.

[169]  L. Lucas,et al.  Surface-sensitive Raman spectroscopy of collagen I fibrils. , 2011, Biophysical journal.

[170]  R. Zenobi,et al.  Nanoscale chemical imaging of segregated lipid domains using tip-enhanced Raman spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[171]  Dhabih V. Chulhai,et al.  Molecular-Resolution Interrogation of a Porphyrin Monolayer by Ultrahigh Vacuum Tip-Enhanced Raman and Fluorescence Spectroscopy. , 2015, Nano letters.

[172]  J. Maguire,et al.  Nano-Raman spectroscopy with side-illumination optics , 2005 .

[173]  A. Borisov,et al.  Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. , 2015, Nano letters.

[174]  R. Durand,et al.  Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes , 1980 .

[175]  S. Kawata,et al.  DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. , 2005, The journal of physical chemistry. B.

[176]  Craig Williams,et al.  High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam , 2010 .

[177]  S. Kawata,et al.  Tip-enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source† , 2012 .

[178]  J. Thomas,et al.  Optical properties in the far u.v. and electronic structure of indium films , 1975 .

[179]  M. Nogami,et al.  The controlled fabrication of “Tip-On-Tip” TERS probes , 2014 .

[180]  Mortazavi,et al.  Supporting Online Material Materials and Methods Figs. S1 to S13 Tables S1 to S3 References Label-free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy , 2022 .

[181]  P. Nordlander,et al.  Tunable plasmon resonances in a metallic nanotip-film system. , 2012, Nanoscale.

[182]  M. Scully,et al.  Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging , 2016, Scientific Reports.

[183]  De‐Yin Wu,et al.  Revealing Intermolecular Interaction and Surface Restructuring of an Aromatic Thiol Assembling on Au(111) by Tip-Enhanced Raman Spectroscopy. , 2016, Analytical chemistry.

[184]  Renato Zenobi,et al.  Characterizing unusual metal substrates for gap‐mode tip‐enhanced Raman spectroscopy , 2013 .

[185]  S. Kawata,et al.  Vibrational Analysis of Organic Molecules Encapsulated in Carbon Nanotubes by Tip-Enhanced Raman Spectroscopy , 2006 .

[186]  W. Xie,et al.  Hot electron-induced reduction of small molecules on photorecycling metal surfaces , 2015, Nature Communications.

[187]  J. Michler,et al.  Synthesis and attachment of silver nanowires on atomic force microscopy cantilevers for tip-enhanced Raman spectroscopy , 2012 .

[188]  B. Weckhuysen,et al.  Differences in single and aggregated nanoparticle plasmon spectroscopy. , 2015, Physical chemistry chemical physics : PCCP.

[189]  Hongxing Xu,et al.  Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors. , 2014, Nanoscale.

[190]  Quang Nguyen,et al.  Simple model for the polarization effects in tip-enhanced Raman spectroscopy , 2007 .

[191]  S. Kawata,et al.  Near-field Raman scattering investigation of tip effects on C 60 molecules , 2006 .

[192]  A. Bouhelier,et al.  Near-field second-harmonic generation induced by local field enhancement. , 2003, Physical review letters.

[193]  T. Elsaesser,et al.  Light Confinement at Ultrasharp Metallic Tips , 2008 .

[194]  Renato Zenobi,et al.  Performing tip‐enhanced Raman spectroscopy in liquids , 2009 .

[195]  R. Zenobi,et al.  Degradation of silver near-field optical probes and its electrochemical reversal , 2015 .

[196]  J. Loos,et al.  Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging , 2007 .

[197]  E. Cherubini,et al.  Preliminary results on an innovative plasmonic device for macromolecules analysis and sequencing , 2013 .

[198]  Satoshi Kawata,et al.  Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. , 2015, Nanoscale.

[199]  D. Zahn,et al.  Compact metal probes: a solution for atomic force microscopy based tip-enhanced Raman spectroscopy. , 2012, The Review of scientific instruments.

[200]  M. Raschke,et al.  Reply to ``Comment on `Scanning-probe Raman spectroscopy with single-molecule sensitivity' '' , 2007 .

[201]  T. Kodama,et al.  Development of apertureless near‐field scanning optical microscope tips for tip‐enhanced Raman spectroscopy , 2008, Journal of microscopy.

[202]  R. Zenobi,et al.  Preparation of Well-Defined DNA Samples for Reproducible Nanospectroscopic Measurements. , 2016, Small.

[203]  Christoph J. Brabec,et al.  Parabolic mirror‐assisted tip‐enhanced spectroscopic imaging for non‐transparent materials , 2009 .

[204]  S. Kawata,et al.  Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. , 2009, Optics express.

[205]  Naihao Chiang,et al.  Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy with Picosecond Excitation. , 2014, The journal of physical chemistry letters.

[206]  Katrin F. Domke,et al.  Versatile Side-Illumination Geometry for Tip-Enhanced Raman Spectroscopy at Solid/Liquid Interfaces. , 2016, Analytical chemistry.

[207]  W. Norimatsu,et al.  Epitaxial graphene on SiC{0001}: advances and perspectives. , 2014, Physical chemistry chemical physics : PCCP.

[208]  Zhilin Yang,et al.  A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy , 2016, Scientific Reports.

[209]  Michael J. Gordon,et al.  Near-field artifacts in tip-enhanced Raman spectroscopy , 2012 .

[210]  X. Xie,et al.  Video-Rate Molecular Imaging in Vivo with Stimulated Raman Scattering , 2010, Science.

[211]  H. Lohninger,et al.  Tip-Enhanced Raman Spectroscopy of Atmospherically Relevant Aerosol Nanoparticles. , 2016, Analytical chemistry.

[212]  S. Kawata,et al.  Visualization of localized strain of a crystalline thin layer at the nanoscale by tip-enhanced Raman spectroscopy and microscopy , 2007 .

[213]  R Zenobi,et al.  Nanoscale chemical imaging using top-illumination tip-enhanced Raman spectroscopy. , 2010, Nano letters.

[214]  Hiro-o Hamaguchi,et al.  Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber , 2004 .

[215]  S. Kazarian,et al.  Tip-enhanced Raman mapping with top-illumination AFM , 2011, Nanotechnology.

[216]  J. Popp,et al.  A manual and an automatic TERS based virus discrimination. , 2015, Nanoscale.

[217]  Lijia Liu,et al.  Tip-Enhanced Raman Imaging and Nano Spectroscopy of Etched Silicon Nanowires , 2013, Sensors.

[218]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[219]  L. Eng,et al.  Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[220]  A. Demming,et al.  Plasmon resonances on metal tips: understanding tip-enhanced Raman scattering. , 2005, The Journal of chemical physics.

[221]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[222]  Y. Lyubchenko,et al.  Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies. , 2016, Ultramicroscopy.

[223]  Y. Morita,et al.  Temporal fluctuation of tip-enhanced raman spectra of adenine molecules , 2007 .

[224]  George C. Schatz,et al.  Single-Molecule Tip-Enhanced Raman Spectroscopy , 2012 .

[225]  L. Novotný,et al.  Tip-enhanced near-field optical microscopy of carbon nanotubes , 2009, Analytical and bioanalytical chemistry.

[226]  De‐Yin Wu,et al.  Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect , 2009 .

[227]  Bayden R. Wood,et al.  Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering. , 2012, Nano letters.

[228]  E. Di Fabrizio,et al.  Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes , 2012, Plasmonics.

[229]  Christian Hafner,et al.  Nanoscale roughness on metal surfaces can increase tip-enhanced Raman scattering by an order of magnitude. , 2007, Nano letters.

[230]  X. Xie,et al.  Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy , 2002 .

[231]  Satoshi Kawata,et al.  Nano‐scale analysis of graphene layers by tip‐enhanced near‐field Raman spectroscopy , 2009 .

[232]  V. Deckert,et al.  A Modified Transmission Tip-Enhanced Raman Scattering (TERS) Setup Provides Access to Opaque Samples , 2014, Applied spectroscopy.

[233]  A. Jorio,et al.  Mechanism of near-field Raman enhancement in two-dimensional systems , 2012 .

[234]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[235]  Zachary D. Schultz,et al.  Protein-ligand binding investigated by a single nanoparticle TERS approach. , 2011, Chemical communications.

[236]  V. Deckert,et al.  Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip‐enhanced Raman spectroscopy , 2015, Electrophoresis.

[237]  A. Kornyshev,et al.  Surface plasmon enhanced spectroscopies and time and space resolved methods: general discussion. , 2015, Faraday discussions.

[238]  Y. Lyubchenko,et al.  Nanoimaging for prion related diseases , 2010, Prion.

[239]  B. Wood,et al.  Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield , 2012 .

[240]  S. Kawata,et al.  Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles , 2006 .

[241]  L. Novotný,et al.  Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. , 2007, Nano letters.

[242]  A. Meixner,et al.  A high numerical aperture parabolic mirror as imaging device for confocal microscopy. , 2001, Optics express.

[243]  Hao Wang,et al.  The chemical origin of enhanced signals from tip-enhanced Raman detection of functionalized nanoparticles. , 2013, The Analyst.

[244]  P. Dittrich,et al.  Tip-enhanced Raman spectroscopic imaging of patterned thiol monolayers , 2011, Beilstein journal of nanotechnology.

[245]  A. N. Vamivakas,et al.  Tip-enhanced Raman mapping of local strain in graphene , 2015, Nanotechnology.

[246]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[247]  R. Zenobi,et al.  Multifunctional microscope for far-field and tip-enhanced Raman spectroscopy , 2006 .

[248]  S. Coussan,et al.  Vibrational modes of aminothiophenol: a TERS and DFT study. , 2015, Physical chemistry chemical physics : PCCP.

[249]  M. Bonn,et al.  Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. , 2016, The journal of physical chemistry. B.

[250]  A. Kisliuk,et al.  Optical properties and enhancement factors of the tips for apertureless near-field optics , 2006 .

[251]  M. Chaigneau,et al.  Molecular Arrangement in Self-Assembled Azobenzene-Containing Thiol Monolayers at the Individual Domain Level Studied through Polarized Near-Field Raman Spectroscopy , 2011, International journal of molecular sciences.

[252]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[253]  Alistair Elfick,et al.  Simulations of tip‐enhanced optical microscopy reveal atomic resolution , 2008, Journal of microscopy.

[254]  Volker Deckert,et al.  Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. , 2012, Biochemical Society transactions.

[255]  Dai Zhang,et al.  Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). , 2006, Journal of the American Chemical Society.

[256]  Neil A. Anderson,et al.  Nanoscale optical imaging of single-walled carbon nanotubes , 2006 .

[257]  Dai Zhang,et al.  Tip-enhanced Raman scattering: Influence of the tip-surface geometry on optical resonance and enhancement , 2009 .

[258]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[259]  Satoshi Kawata,et al.  Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. , 2013, Physical review letters.

[260]  Clemens Storz,et al.  NONLINEAR ABSORPTION EXTENDS CONFOCAL FLUORESCENCE MICROSCOPY INTO THE ULTRA-VIOLET REGIME AND CONFINES THE ILLUMINATION VOLUME , 1994 .

[261]  Austin C. Faucett,et al.  Nanoscale reduction of graphene oxide under ambient conditions , 2015 .

[262]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[263]  M. Chaigneau,et al.  Tip enhanced Raman spectroscopy evidence for amorphous carbon contamination on gold surfaces , 2010 .

[264]  S. Kawata,et al.  Deep-UV tip-enhanced Raman scattering , 2009 .

[265]  Satoshi Kawata,et al.  Focused Excitation of Surface Plasmon Polaritons Based on Gap-Mode in Tip-Enhanced Spectroscopy , 2007 .

[266]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[267]  Dhabih V. Chulhai,et al.  The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. , 2013, Journal of the American Chemical Society.

[268]  C. Du,et al.  Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip , 2010 .

[269]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[270]  J. Köhler,et al.  High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis , 2016, Analytical and Bioanalytical Chemistry.

[271]  G. Ertl,et al.  Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN− ions at gold surfaces , 2003 .

[272]  J. Maguire,et al.  High contrast scanning nano‐Raman spectroscopy of silicon , 2007 .

[273]  C. Barrios,et al.  Tip‐induced heating in apertureless near‐field optics , 2009 .

[274]  B. Weckhuysen,et al.  Extending the plasmonic lifetime of tip-enhanced Raman spectroscopy probes. , 2016, Physical chemistry chemical physics : PCCP.

[275]  Volker Deckert,et al.  Spatial resolution in Raman spectroscopy. , 2015, Faraday discussions.

[276]  Lukas Novotny,et al.  Nanoscale vibrational analysis of single-walled carbon nanotubes. , 2005, Journal of the American Chemical Society.

[277]  V. Deckert,et al.  Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization , 2014, Analytical and Bioanalytical Chemistry.

[278]  I. Lucas,et al.  Tip enhanced Raman spectroscopy imaging of opaque samples in organic liquid. , 2016, Physical chemistry chemical physics : PCCP.

[279]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[280]  R. V. Van Duyne,et al.  Plasmon-Mediated Electron Transport in Tip-Enhanced Raman Spectroscopic Junctions. , 2015, The journal of physical chemistry letters.

[281]  V. Deckert,et al.  Local protonation control using plasmonic activation. , 2014, Chemical communications.

[282]  Joon Won Park,et al.  Nanostar probes for tip-enhanced spectroscopy. , 2016, Nanoscale.

[283]  R. Zenobi,et al.  Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates , 2008, Analytical and bioanalytical chemistry.

[284]  S. Kawata,et al.  Confinement of enhanced field investigated by tip-sample gap regulation in tapping-mode tip-enhanced Raman microscopy , 2007 .

[285]  Hongxing Xu,et al.  Tip-enhanced Raman scattering of p-thiocresol molecules on individual gold nanoparticles , 2008 .

[286]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[287]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[288]  D. Naumann,et al.  Comparative Study of Far-Field and Near-Field Raman Spectra from Silicon-Based Samples and Biological Nanostructures , 2011 .

[289]  Satoshi Kawata,et al.  Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy , 2004 .

[290]  Gerhard Ertl,et al.  Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces , 2002 .

[291]  Weihua Zhang,et al.  Enhancement of Raman Signals with Silver-Coated Tips , 2006, Applied spectroscopy.

[292]  Zhi-Feng Huang Scale-coupling and interface-pinning effects in the phase-field-crystal model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[293]  Sanford A. Asher,et al.  UV resonance Raman excitation profiles of the aromatic amino acids , 1986 .

[294]  Yukihiro Ozaki,et al.  Nanoscale pH Profile at a Solution/Solid Interface by Chemically Modified Tip-Enhanced Raman Scattering , 2016 .

[295]  Andreas Volkmer,et al.  Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy , 2002 .

[296]  R. Zenobi,et al.  Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips , 2007, Analytical and bioanalytical chemistry.

[297]  Javier Aizpurua,et al.  Electromagnetic field enhancement in TERS configurations , 2009 .

[298]  M. Hashimoto,et al.  Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[299]  Volker Deckert,et al.  Tip-enhanced Raman scattering. , 2008, Chemical Society reviews.

[300]  Hongxing Xu,et al.  Is 4‐nitrobenzenethiol converted to p,p′‐dimercaptoazobenzene or 4‐aminothiophenol by surface photochemistry reaction? , 2011 .

[301]  F. Theil,et al.  Surface-enhanced Raman spectroscopy (SERS): progress and trends , 2012, Analytical and Bioanalytical Chemistry.

[302]  Conor L Evans,et al.  Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[303]  A. Rakić,et al.  Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. , 1995, Applied optics.

[304]  Zachary D. Schultz,et al.  TERS detection of αVβ3 integrins in intact cell membranes. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[305]  Peter Nordlander,et al.  Aluminum for plasmonics. , 2014, ACS nano.

[306]  R. Zenobi,et al.  Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy. , 2015, Nanoscale.

[307]  Tobias J Kippenberg,et al.  Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. , 2014, Nature nanotechnology.

[308]  C. Sukenik,et al.  Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: Enhancement of second-harmonic generation , 2002 .

[309]  Dai Zhang,et al.  Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[310]  M. Bonn,et al.  Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy. , 2015, Small.

[311]  Y. Ekinci,et al.  Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. , 2012, Journal of the American Chemical Society.

[312]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[313]  R. Zenobi,et al.  Toward an Effective Control of DNA's Submolecular Conformation on a Surface , 2016 .

[314]  Gerhard Ertl,et al.  Tip‐enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields , 2005 .

[315]  F. Miller Misassignment of the strong Raman band near 1000 cm−1 in some substituted benzenes, and the Herzberg versus Wilson convention for numbering the vibrations of benzene , 1988 .

[316]  David Richards,et al.  Tip-enhanced Raman microscopy: practicalities and limitations , 2003 .

[317]  George C Schatz,et al.  Nanoscale Chemical Imaging of a Dynamic Molecular Phase Boundary with Ultrahigh Vacuum Tip-Enhanced Raman Spectroscopy. , 2016, Nano letters.

[318]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[319]  I. Yamaguchi,et al.  Near-Field Scanning Optical Microscope Using a Gold Particle , 1997 .

[320]  R. Zenobi,et al.  Tip-enhanced Raman spectroscopic imaging shows segregation within binary self-assembled thiol monolayers at ambient conditions , 2015, Analytical and Bioanalytical Chemistry.

[321]  S. Kawata,et al.  Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy. , 2006, The Journal of chemical physics.

[322]  Satoshi Kawata,et al.  Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope , 2002 .

[323]  George C Schatz,et al.  Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. , 2017, Nano letters.

[324]  Satoshi Kawata,et al.  A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient , 2014, Nature Communications.

[325]  I. Lednev,et al.  Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. , 2013, The Analyst.

[326]  H. Solak,et al.  Plasmon resonances of aluminum nanoparticles and nanorods , 2008 .

[327]  Claus Ropers,et al.  Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. , 2010, Nano letters.

[328]  Y. Fujita,et al.  Bias voltage-dependent STM−tip-enhanced Raman spectroscopy of benzenethiol-modified gold nanoplates , 2013 .

[329]  Volker Deckert,et al.  Structure and composition of insulin fibril surfaces probed by TERS. , 2012, Journal of the American Chemical Society.

[330]  Y. Saito,et al.  Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. , 2016, Nanoscale.

[331]  M. Raschke,et al.  Polar phonon mode selection rules in tip-enhanced Raman scattering , 2009 .

[332]  Stanislaus S. Wong,et al.  Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. , 2009, Nature nanotechnology.

[333]  Matthew D Sonntag,et al.  Tip-Enhanced Raman Spectroscopy with Picosecond Pulses. , 2014, The journal of physical chemistry letters.

[334]  Katrin F. Domke,et al.  Direct monitoring of plasmon resonances in a tip-surface gap of varying width , 2007 .

[335]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[336]  Jianing Chen,et al.  Effect of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy , 2015, Scientific Reports.

[337]  V. Deckert,et al.  Label-free monitoring of plasmonic catalysis on the nanoscale. , 2015, The Analyst.

[338]  M. Chaigneau,et al.  Exchange of methyl- and azobenzene-terminated alkanethiols on polycrystalline gold studied by tip-enhanced Raman mapping. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[339]  H. Fuchs,et al.  Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film. , 2007, Optics express.

[340]  D. Richards,et al.  Etching gold tips suitable for tip-enhanced near-field optical microscopy. , 2009, The Review of scientific instruments.

[341]  M. Scully,et al.  Gap-mode enhancement on MoS2 probed by functionalized tip-enhanced Raman spectroscopy , 2016 .

[342]  A. Meixner,et al.  Surface- and tip-enhanced Raman spectroscopy of DNA , 2010 .

[343]  Hongxing Xu,et al.  Tip‐Enhanced Resonance Couplings Revealed by High Vacuum Tip‐Enhanced Raman Spectroscopy , 2013 .

[344]  Katrin F. Domke,et al.  Enhanced Raman spectroscopy: Single molecules or carbon? , 2007 .

[345]  Tyler J. Dill,et al.  Colloidal Nanoantennas for Hyperspectral Chemical Mapping. , 2016, ACS nano.

[346]  D. Kern,et al.  Fabrication of a plasmonic nanocone on top of an AFM cantilever , 2015 .

[347]  Renato Zenobi,et al.  Nanoscale chemical imaging of single-layer graphene. , 2011, ACS nano.

[348]  Sheng-Chao Huang,et al.  Electrochemical Tip-Enhanced Raman Spectroscopy. , 2015, Journal of the American Chemical Society.

[349]  A. Jorio,et al.  Raman Studies of Carbon Nanostructures , 2016 .

[350]  M. Raschke,et al.  Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. , 2016, Nano letters.

[351]  Satoshi Kawata,et al.  Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes , 2013, Nature Communications.

[352]  Volker Deckert,et al.  Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles. , 2015, Nanoscale.

[353]  Kyoung-Duck Park,et al.  Variable-Temperature Tip-Enhanced Raman Spectroscopy of Single-Molecule Fluctuations and Dynamics. , 2016, Nano letters.

[354]  Prashant Nagpal,et al.  Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture , 2013, Scientific Reports.

[355]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[356]  Lukas Novotny,et al.  Tip-enhanced optical spectroscopy , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[357]  Volker Deckert,et al.  Surface- and tip-enhanced Raman scattering of DNA components† , 2006 .

[358]  A. Meixner,et al.  Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution , 2003, Journal of microscopy.

[359]  Hongxing Xu,et al.  Plasmonic scissors for molecular design. , 2013, Chemistry.

[360]  Jürgen Popp,et al.  Raman to the limit: tip‐enhanced Raman spectroscopic investigations of a single tobacco mosaic virus , 2009 .

[361]  M. Mochizuki,et al.  Light-transmittable Ultrasmooth Gold Film for Gap-mode Tip-enhanced Raman Scattering Spectroscopy , 2014 .