Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor.

The RNA motifs that bind guanidinylated kanamycin A (G Kan A) and guanidinylated neomycin B (G Neo B) were identified via two-dimensional combinatorial screening (2DCS). The results of these studies enabled the "bottom-up" design of a small molecule inhibitor of oncogenic microRNA-10b.

[1]  M. Disney,et al.  Probing a 2-aminobenzimidazole library for binding to RNA internal loops via two-dimensional combinatorial screening. , 2012, ACS chemical biology.

[2]  Jessica L. Childs-Disney,et al.  Rational design of bioactive, modularly assembled aminoglycosides targeting the RNA that causes myotonic dystrophy type 1. , 2012, ACS chemical biology.

[3]  Jessica L. Childs-Disney,et al.  Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. , 2012, ACS chemical biology.

[4]  Souvik Maiti,et al.  The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of miR-21 function by directly targeting its precursor. , 2012, Angewandte Chemie.

[5]  M. Disney,et al.  Recent advances in developing small molecules targeting RNA. , 2012, ACS chemical biology.

[6]  J. Wilmott,et al.  MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma , 2011, Proceedings of the National Academy of Sciences.

[7]  Steven J. Seedhouse,et al.  Defining the RNA internal loops preferred by benzimidazole derivatives via 2D combinatorial screening and computational analysis. , 2011, Journal of the American Chemical Society.

[8]  Douglas D Young,et al.  Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. , 2010, Journal of the American Chemical Society.

[9]  Steven J. Seedhouse,et al.  Structure-activity relationships through sequencing (StARTS) defines optimal and suboptimal RNA motif targets for small molecules. , 2010, Angewandte Chemie.

[10]  Robert A. Weinberg,et al.  Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model , 2010, Nature Biotechnology.

[11]  Jessica L. Childs-Disney,et al.  Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. , 2009, Journal of the American Chemical Society.

[12]  Qihong Huang,et al.  Small-molecule inhibitors of microrna miR-21 function. , 2008, Angewandte Chemie.

[13]  Matthew D Disney,et al.  Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. , 2008, Journal of the American Chemical Society.

[14]  Paul J Hergenrother,et al.  Targeting RNA with small molecules. , 2008, Chemical reviews.

[15]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[16]  Matthew D Disney,et al.  A small molecule microarray platform to select RNA internal loop-ligand interactions. , 2007, ACS chemical biology.

[17]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[18]  C. Croce,et al.  MicroRNAs and chromosomal abnormalities in cancer cells , 2006, Oncogene.

[19]  C. Myers,et al.  Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. , 2005, Cancer research.

[20]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[21]  D. Turner,et al.  Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[23]  N. Luedtke,et al.  Cellular uptake of aminoglycosides, guanidinoglycosides, and poly-arginine. , 2003, Journal of the American Chemical Society.

[24]  Christine S. Chow,et al.  A Structural Basis for RNA−Ligand Interactions , 1997 .