Automated In Vivo Navigation of Magnetic-Driven Microrobots Using OCT Imaging Feedback

<italic>Objective:</italic> The application of <italic>in vivo</italic> microrobot navigation has received considerable attention from the field of precision therapy, which uses microrobots in living organisms. <italic>Methods:</italic> This study investigates the navigation of microrobots <italic>in vivo</italic> using optical coherence tomography (OCT) imaging feedback. The electromagnetic gradient field generated by a home-made electromagnetic manipulation system is magnetically modeled. With this model, the magnetic force acting on the microrobot is calculated, and the relationship between this force and the velocity of the microrobot is characterized. <italic>Results:</italic> Results are verified through in vitro experiments wherein microrobots are driven in three types of fluid, namely, normal saline, gastric juice, and mouse urine. <italic>In vivo</italic> experiments are performed to navigate the microrobot in a mouse portal vein in which the OCT imaging system tracks the microrobot <italic>in vivo</italic>. <italic>Conclusions:</italic> Experimental results demonstrate the effectiveness of the proposed approach. The microrobots can be magnetically driven in the <italic>in vivo</italic> environment using the OCT imaging feedback. <italic>Significance:</italic> The significance of this study lies in providing a new method of driving microrobots <italic>in vivo</italic>.

[1]  Martin Pumera,et al.  Cooperative Multifunctional Self‐Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery , 2018, Advanced Functional Materials.

[2]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[3]  Jie Yang,et al.  Development of an Enhanced Electromagnetic Actuation System With Enlarged Workspace , 2017, IEEE/ASME Transactions on Mechatronics.

[4]  Metin Sitti,et al.  Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella , 2014, IEEE Transactions on Robotics.

[5]  Daniel S. Kermany,et al.  Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning , 2018, Cell.

[6]  P. Dario,et al.  Removing vascular obstructions: a challenge, yet an opportunity for interventional microdevices , 2012, Biomedical microdevices.

[7]  Metin Sitti,et al.  Modeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots , 2005, AIM 2005.

[8]  Islam S. M. Khalil,et al.  Ultrasound-guided minimally invasive grinding for clearing blood clots: promises and challenges , 2018, IEEE Instrumentation & Measurement Magazine.

[9]  Haibo Ji,et al.  Robust Control to Manipulate a Microparticle with Electromagnetic Coil System , 2017, IEEE Transactions on Industrial Electronics.

[10]  Qi Zhou,et al.  Multifunctional biohybrid magnetite microrobots for imaging-guided therapy , 2017, Science Robotics.

[11]  Metin Sitti,et al.  An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[12]  Ran Wang,et al.  Development of a magnetic microrobot for carrying and delivering targeted cells , 2018, Science Robotics.

[13]  J Kienlen,et al.  Pharmacocinétique et modifications des propriétés physiques du sang et des urines après administration d'un dextran 60 000 , 1990 .

[14]  M. P. Kummer,et al.  A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements , 2008, IEEE Sensors Journal.

[15]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[16]  Islam S. M. Khalil,et al.  Magnetic-based closed-loop control of paramagnetic microparticles using ultrasound feedback , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[17]  U. Demirci,et al.  Guided and magnetic self-assembly of tunable magnetoceptive gels , 2014, Nature Communications.

[18]  Michalina J Gora,et al.  Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. , 2017, Biomedical optics express.

[19]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[20]  Sanjiv S Gambhir,et al.  Visualizing Implanted Tumors in Mice with Magnetic Resonance Imaging Using Magnetotactic Bacteria , 2009, Clinical Cancer Research.

[21]  Metin Sitti,et al.  Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing, and Retrieving Untethered Microgrippers , 2014, IEEE Transactions on Biomedical Engineering.

[22]  Grigory V Gelikonov,et al.  Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. , 2014, Optics letters.

[23]  J Kienlen,et al.  [Pharmacokinetics and changes in the physical properties of blood and urine after administration of dextran 60000]. , 1990, Annales francaises d'anesthesie et de reanimation.

[24]  Dmitry Oleynikov,et al.  Future Robotic Systems: Microrobotics and Autonomous Robots , 2018, Robotic-Assisted Minimally Invasive Surgery.

[25]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[26]  Salvador Pané,et al.  3D Printed Enzymatically Biodegradable Soft Helical Microswimmers , 2018, Advanced Functional Materials.

[27]  Metin Sitti,et al.  Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance , 2018, IEEE Robotics and Automation Letters.

[28]  Alaa Adel,et al.  Magnetic localization and control of helical robots for clearing superficial blood clots , 2019, APL bioengineering.

[29]  Jake J. Abbott,et al.  OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation , 2010, IEEE Transactions on Robotics.

[30]  Li Zhang,et al.  Magnetic Navigation of a Rotating Colloidal Swarm Using Ultrasound Images , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[31]  Sylvain Martel,et al.  MRI-based communication for untethered intelligent medical microrobots , 2015 .

[32]  Dongfang Li,et al.  Gradient-Enhanced Electromagnetic Actuation System With a New Core Shape Design for Microrobot Manipulation , 2020, IEEE Transactions on Industrial Electronics.

[33]  Hongsoo Choi,et al.  A Capsule‐Type Microrobot with Pick‐and‐Drop Motion for Targeted Drug and Cell Delivery , 2018, Advanced healthcare materials.

[34]  Juho Pokki,et al.  In Vitro Oxygen Sensing Using Intraocular Microrobots , 2012, IEEE Transactions on Biomedical Engineering.