Vectorial resilient PC(l) of order k Boolean functions from AG-codes

Propagation criteria and resiliency of vectorial Boolean functions are important for cryptographic purpose (see [1–4, 7, 8, 1, 11, 16]). Kurosawa, Stoh [8] and Carlet [1] gave a construction of Boolean functions satisfying PC(l) of order k from binary linear or nonlinear codes. In this paper, the algebraic-geometric codes over GF(2m) are used to modify the Carlet and Kurosawa-Satoh’s construction for giving vectorial resilient Boolean functions satisfying PC(l) of order k criterion. This new construction is compared with previously known results.

[1]  Albert R. Meyer,et al.  Logic at Botik '89 , 1989, Lecture Notes in Computer Science.

[2]  Stafford E. Tavares,et al.  On the Design of S-Boxes , 1985, CRYPTO.

[3]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[4]  Claude Carlet On the Propagation Criterion of Degree l and Order k , 1998, EUROCRYPT.

[5]  Yuliang Zheng,et al.  Cryptographically resilient functions , 1997, IEEE Trans. Inf. Theory.

[6]  Jung Hee Cheon,et al.  Nonlinear Vector Resilient Functions , 2001, CRYPTO.

[7]  Joos Vandewalle,et al.  Boolean Functions Satisfying Higher Order Propagation Criteria , 1991, EUROCRYPT.

[8]  Kaoru Kurosawa,et al.  Primal-Dual Distance Bounds of Linear Codes With Application to Cryptography , 2005, IEEE Transactions on Information Theory.

[9]  Willi Meier,et al.  Nonlinearity Criteria for Cryptographic Functions , 1990, EUROCRYPT.

[10]  H. Stichtenoth,et al.  A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound , 1995 .

[11]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[12]  Marcel van der Vlugt,et al.  Tables of curves with many points , 2000, Math. Comput..

[13]  Kaoru Kurosawa,et al.  Design of SAC/PC(l) of Order k Boolean Functions and Three Other Cryptographic Criteria , 1997, EUROCRYPT.

[14]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[15]  Enes Pasalic,et al.  A construction of resilient functions with high nonlinearity , 2003, IEEE Trans. Inf. Theory.

[16]  J. H. van Lint,et al.  Introduction to Coding Theory , 1982 .