THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: ENSEMBLE SPECTROSCOPIC VARIABILITY OF QUASAR BROAD EMISSION LINES

We explore the variability of quasars in the Mg ii and H β ?> broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with H β ?> . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with H β ?> . The Mg ii emission line is significantly variable ( Δ f / f ∼ 10 % ?> on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 ?> days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. H β ?> is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1 < z < 2 ?> quasars.

[1]  G. Richards,et al.  Are the variability properties of the Kepler AGN light curves consistent with a damped random walk , 2015, 1505.00360.

[2]  B. Peterson,et al.  SWIFT/UVOT GRISM MONITORING OF NGC 5548 IN 2013: AN ATTEMPT AT Mg ii REVERBERATION MAPPING , 2015, 1503.02029.

[3]  L. Ho,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: NO EVIDENCE FOR EVOLUTION IN THE M • − &sgr; * ?> RELATION TO z ∼ 1 ?> , 2015, 1502.01034.

[4]  P. Hall,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. I. ULTRAVIOLET OBSERVATIONS OF THE SEYFERT 1 GALAXY NGC 5548 WITH THE COSMIC ORIGINS SPECTROGRAPH ON HUBBLE SPACE TELESCOPE , 2015, 1501.05954.

[5]  W. M. Wood-Vasey,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW , 2014, 1408.5970.

[6]  Research Center for the Early Universe,et al.  STATISTICAL PROPERTIES OF MULTI-EPOCH SPECTRAL VARIABILITY OF SDSS STRIPE 82 QUASARS , 2014, 1401.5074.

[7]  J. Stone,et al.  ON THE THERMAL STABILITY OF RADIATION-DOMINATED ACCRETION DISKS , 2013, 1309.5646.

[8]  A. Udalski,et al.  SALT long-slit spectroscopy of LBQS 2113-4538: variability of the Mg II and Fe II component , 2013, 1308.3980.

[9]  G. Richards,et al.  MEAN SPECTRAL ENERGY DISTRIBUTIONS AND BOLOMETRIC CORRECTIONS FOR LUMINOUS QUASARS , 2013, 1304.5573.

[10]  Tong Liu,et al.  UNDERSTANDING SIMULATIONS OF THIN ACCRETION DISKS BY ENERGY EQUATION , 2012, 1210.6173.

[11]  D. N. Okhmat,et al.  THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS , 2012, 1210.2397.

[12]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[13]  Yiqing Liu,et al.  THE CORRELATIONS BETWEEN OPTICAL VARIABILITY AND PHYSICAL PARAMETERS OF QUASARS IN SDSS STRIPE 82 , 2012, Proceedings of the International Astronomical Union.

[14]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[15]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[16]  J. Trump,et al.  Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey , 2012, 1206.2642.

[17]  Yue Shen,et al.  COMPARING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATORS FOR LUMINOUS QUASARS , 2012, 1203.0601.

[18]  C. Kochanek,et al.  IS QUASAR OPTICAL VARIABILITY A DAMPED RANDOM WALK? , 2012, 1202.3783.

[19]  Ž. Ivezić,et al.  A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING , 2011, 1112.0679.

[20]  Rick Edelson,et al.  KEPLER OBSERVATIONS OF RAPID OPTICAL VARIABILITY IN ACTIVE GALACTIC NUCLEI , 2011, 1111.0672.

[21]  R. M. Sainz,et al.  SCATTERING POLARIZATION AND HANLE EFFECT IN STELLAR ATMOSPHERES WITH HORIZONTAL INHOMOGENEITIES , 2011, 1108.2958.

[22]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[23]  Brandon C. Kelly,et al.  A STOCHASTIC MODEL FOR THE LUMINOSITY FLUCTUATIONS OF ACCRETING BLACK HOLES , 2010, 1009.6011.

[24]  T. Wang,et al.  DEPENDENCE OF THE OPTICAL/ULTRAVIOLET VARIABILITY ON THE EMISSION-LINE PROPERTIES AND EDDINGTON RATIO IN ACTIVE GALACTIC NUCLEI , 2010, 1005.0901.

[25]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[26]  Ian M. McHardy,et al.  On the use of structure functions to study blazar variability: caveats and problems , 2010, 1001.2045.

[27]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg ii λ2800 EMISSION LINE , 2009, 0910.2848.

[28]  O. Blaes,et al.  TURBULENT STRESSES IN LOCAL SIMULATIONS OF RADIATION-DOMINATED ACCRETION DISKS, AND THE POSSIBILITY OF THE LIGHTMAN–EARDLEY INSTABILITY , 2009, 0908.1117.

[29]  M. Gaskell,et al.  What broad emission lines tell us about how active galactic nuclei work , 2009, 0908.0386.

[30]  T. O. S. University,et al.  MASS FUNCTIONS OF THE ACTIVE BLACK HOLES IN DISTANT QUASARS FROM THE LARGE BRIGHT QUASAR SURVEY, THE BRIGHT QUASAR SURVEY, AND THE COLOR-SELECTED SAMPLE OF THE SDSS FALL EQUATORIAL STRIPE , 2009, 0904.3348.

[31]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[32]  Ž. Ivezić,et al.  Time Variability of Quasars: the Structure Function Variance , 2008, 0810.5159.

[33]  Shuang Li,et al.  An accretion disc model for quasar optical variability , 2008, 0805.0351.

[34]  S. Mineshige,et al.  Black-Hole Accretion Disks: Towards a New Paradigm , 2008 .

[35]  J. Woo Mg ii LINE VARIABILITY OF HIGH-LUMINOSITY QUASARS , 2008, 0802.3705.

[36]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[37]  D. Berk,et al.  On the variability of quasars: a link between the Eddington ratio and optical variability? , 2007, 0711.4844.

[38]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[39]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[40]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[41]  D. Trèvese,et al.  Line and continuum variability of two intermediate-redshift, high-luminosity quasars , 2007, 0704.1958.

[42]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[43]  Bradley M. Peterson,et al.  Black hole masses from reverberation mapping , 2006 .

[44]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[45]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[46]  R. Narayan,et al.  Black Hole Accretion , 2005, Science.

[47]  Davis,et al.  Structure Function Analysis of Long-Term Quasar Variability , 2004, astro-ph/0411348.

[48]  K. Korista,et al.  What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei , 2004, astro-ph/0402506.

[49]  R. Nichol,et al.  The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0310336.

[50]  K. Leighly,et al.  An Extreme Ultraviolet Explorer Atlas of Seyfert Galaxy Light Curves: Search for Periodicity , 2002, astro-ph/0211185.

[51]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[52]  M. Hawkins Variability in active galactic nuclei: confrontation of models with observations , 2001, astro-ph/0110707.

[53]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[54]  Kirk T. Korista,et al.  Locally Optimally Emitting Clouds and the Variable Broad Emission Line Spectrum of NGC 5548 , 2000, astro-ph/0001399.

[55]  Cfa,et al.  Simultaneous EUV and X-ray variability of NGC 4051 , 1999, astro-ph/9912103.

[56]  A. Edge,et al.  X-ray variability in a deep, flux-limited sample of QSOs , 1999, astro-ph/9912068.

[57]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[58]  Paul S. Smith,et al.  Long-term optical variability properties of the Palomar–Green quasars , 1999, astro-ph/9902254.

[59]  A. Schwarzenberg-Czerny,et al.  The power density spectrum of NGC 5548 and the nature of its variability , 1998, astro-ph/9810210.

[60]  A. Laor On Quasar Masses and Quasar Host Galaxies , 1998, astro-ph/9807266.

[61]  B. Peterson,et al.  Optical Continuum and Emission-Line Variability of Seyfert 1 Galaxies , 1998, astro-ph/9802104.

[62]  Y. Lyubarskii,et al.  Flicker noise in accretion discs , 1997 .

[63]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[64]  Gerard A. Kriss,et al.  The Variability and Spectrum of NGC 5548 in the Extreme Ultraviolet , 1997 .

[65]  J. Baldwin,et al.  An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines , 1996, astro-ph/9611220.

[66]  Richard G. McMahon,et al.  The variability of optically selected quasars , 1994 .

[67]  H. R. Miller,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 5: Variability of the ultraviolet continuum and emission lines of NGC 3783 , 1994 .

[68]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[69]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[70]  H. Netzer Excitation of MG II and Fe II lines in quasars and Seyfert galaxies , 1980 .

[71]  A. Uomoto,et al.  Image-tube photography of a complete sample of 4C radio sources , 1976 .

[72]  X. I. O. D. Ong,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALACTIC NUCLEI USING THE Mg II λ2800 EMISSION LINE , 2009 .

[73]  B. Peterson,et al.  AGN Variability from X-Rays to Radio Waves , 2006 .

[74]  Wei Zheng,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I, an 8 month campaign of monitoring NGC 5548 with IUE , 1991 .

[75]  G. MacAlpine PHOTOIONIZATION MODELS FOR THE EMISSION-LINE REGIONS OF QUASI-STELLAR AND RELATED OBJECTS. , 1972 .