In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice

[1]  Wing‐Fu Lai,et al.  Progress and trends in the development of therapies for Hutchinson–Gilford progeria syndrome , 2020, Aging cell.

[2]  David R. Liu,et al.  Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors , 2020, Nature Biotechnology.

[3]  Jennifer A. Doudna,et al.  Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity , 2020, Nature Biotechnology.

[4]  Jonathan Yen,et al.  Directed evolution of adenine base editors with increased activity and therapeutic application , 2020, Nature Biotechnology.

[5]  David R. Liu,et al.  Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses , 2019, Nature Biomedical Engineering.

[6]  P. Magistretti,et al.  Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction , 2019, Cell Research.

[7]  Tony P. Huang,et al.  Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors , 2019, Nature Biotechnology.

[8]  V. Quesada,et al.  Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome , 2019, Nature Medicine.

[9]  Galina A. Erikson,et al.  Single-Dose CRISPR/Cas9 Therapy Extends Lifespan of Mice with Hutchinson-Gilford Progeria Syndrome , 2018, Nature Medicine.

[10]  M. A. Odena,et al.  Next-Generation Sequencing and Quantitative Proteomics of Hutchinson-Gilford progeria syndrome-derived cells point to a role of nucleotide metabolism in premature aging , 2018, PloS one.

[11]  C. Cole,et al.  The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers , 2018, Nature Reviews Cancer.

[12]  M. Robinson,et al.  Treatment of a metabolic liver disease by in vivo genome base editing in adult mice , 2018, Nature Medicine.

[13]  E. Levanon,et al.  A-to-I RNA editing — immune protector and transcriptome diversifier , 2018, Nature Reviews Genetics.

[14]  David R. Liu,et al.  Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction , 2018, Nature Biotechnology.

[15]  R. D'Agostino,et al.  Cardiac Abnormalities in Patients With Hutchinson-Gilford Progeria Syndrome , 2018, JAMA cardiology.

[16]  Nicole M. Gaudelli,et al.  Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage , 2017, Nature.

[17]  J. Doudna,et al.  CRISPR-Cas9 Structures and Mechanisms. , 2017, Annual review of biophysics.

[18]  J. Joung,et al.  CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets , 2017, Nature Methods.

[19]  R. Chandler,et al.  Recombinant Adeno-Associated Viral Integration and Genotoxicity: Insights from Animal Models. , 2017, Human gene therapy.

[20]  C. López-Otín,et al.  Cardiac electrical defects in progeroid mice and Hutchinson–Gilford progeria syndrome patients with nuclear lamina alterations , 2016, Proceedings of the National Academy of Sciences.

[21]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[22]  Jingang Liu,et al.  Overexpression of Rab25 promotes hepatocellular carcinoma cell proliferation and invasion , 2016, Tumor Biology.

[23]  J. Keith Joung,et al.  731. High-Fidelity CRISPR-Cas9 Nucleases with No Detectable Genome-Wide Off-Target Effects , 2016 .

[24]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[25]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[26]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[27]  Michael Recht,et al.  Long-term safety and efficacy of factor IX gene therapy in hemophilia B. , 2014, The New England journal of medicine.

[28]  R. D'Agostino,et al.  Impact of Farnesylation Inhibitors on Survival in Hutchinson-Gilford Progeria Syndrome , 2014, Circulation.

[29]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[30]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[31]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[32]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[33]  F. Collins,et al.  Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene , 2013, Nucleic acids research.

[34]  A. Giobbie-Hurder,et al.  Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome , 2012, Proceedings of the National Academy of Sciences.

[35]  G. Smyth,et al.  Camera: a competitive gene set test accounting for inter-gene correlation , 2012, Nucleic acids research.

[36]  Lili Wang,et al.  Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. , 2012, Human gene therapy.

[37]  A. Giobbie-Hurder,et al.  Mechanisms of Premature Vascular Aging in Children With Hutchinson-Gilford Progeria Syndrome , 2012, Hypertension.

[38]  I. Varela,et al.  Splicing-Directed Therapy in a New Mouse Model of Human Accelerated Aging , 2011, Science Translational Medicine.

[39]  Francis S Collins,et al.  Rapamycin Reverses Cellular Phenotypes and Enhances Mutant Protein Clearance in Hutchinson-Gilford Progeria Syndrome Cells , 2011, Science Translational Medicine.

[40]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[41]  F. Collins,et al.  Cardiovascular Pathology in Hutchinson-Gilford Progeria: Correlation With the Vascular Pathology of Aging , 2010, Arteriosclerosis, thrombosis, and vascular biology.

[42]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[43]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[44]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[45]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[46]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[47]  J. Rabinowitz,et al.  Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  D. Duan,et al.  Systemic AAV-9 transduction in mice is influenced by animal age but not by the route of administration , 2007, Gene Therapy.

[49]  Daniel G. Miller,et al.  AAV Vector Integration Sites in Mouse Hepatocellular Carcinoma , 2007, Science.

[50]  Francis S. Collins,et al.  Human laminopathies: nuclei gone genetically awry , 2006, Nature Reviews Genetics.

[51]  F. Collins,et al.  Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Theresa A. Storm,et al.  Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[53]  T. Misteli,et al.  Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome , 2005, Nature Medicine.

[54]  Pierre Cau,et al.  Lamin A Truncation in Hutchinson-Gilford Progeria , 2003, Science.

[55]  Laura Scott,et al.  Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome , 2003, Nature.

[56]  T. Flotte,et al.  Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors , 2001, Gene Therapy.

[57]  P. D. de Jong,et al.  A modular, positive selection bacterial artificial chromosome vector with multiple cloning sites. , 1999, Genomics.

[58]  B. Byrne,et al.  Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  S. Imbeaud,et al.  Wild-type AAV Insertions in Hepatocellular Carcinoma Do Not Inform Debate Over Genotoxicity Risk of Vectorized AAV. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[60]  M. Sands AAV-mediated liver-directed gene therapy. , 2011, Methods in molecular biology.

[61]  T. Flotte,et al.  216. Long Term Portal Vein Administration of AAV-WPRE Vector Results in Increased Incidence of Neoplastic Disease and Hepatic Pathology , 2006 .

[62]  E. Gilbert-Barness,et al.  Histological and ultrastructural features of atherosclerosis in progeria. , 1999, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.