A stereo display prototype with multiple focal distances

Typical stereo displays provide incorrect focus cues because the light comes from a single surface. We describe a prototype stereo display comprising two independent fixed-viewpoint volumetric displays. Like autostereoscopic volumetric displays, fixed-viewpoint volumetric displays generate near-correct focus cues without tracking eye position, because light comes from sources at the correct focal distances. (In our prototype, from three image planes at different physical distances.) Unlike autostereoscopic volumetric displays, however, fixed-viewpoint volumetric displays retain the qualities of modern projective graphics: view-dependent lighting effects such as occlusion, specularity, and reflection are correctly depicted; modern graphics processor and 2-D display technology can be utilized; and realistic fields of view and depths of field can be implemented. While not a practical solution for general-purpose viewing, our prototype display is a proof of concept and a platform for ongoing vision research. The design, implementation, and verification of this stereo display are described, including a novel technique of filtering along visual lines using 1-D texture mapping.

[1]  Mark Segal,et al.  The OpenGL Graphics System: A Specification , 2004 .

[2]  Sakuichi Ohtsuka,et al.  54.1: A Novel Direct‐Vision 3‐D Display Using Luminance‐Modulated Two 2‐D Images Displayed at Different Depths , 2000 .

[3]  S. Suyama A new method for protruding apparent 3-D images in the DFD (depth-fused 3-D) display , 2001 .

[4]  Mark Mon-Williams,et al.  Natural problems for stereoscopic depth perception in virtual environments , 1995, Vision Research.

[5]  Matthias Wöpking,et al.  Viewing comfort with stereoscopic pictures : an experimental study on the subjective effects of disparity magnitude and depth of focus , 1995 .

[6]  Mark J. Kilgard,et al.  OpenGL programming for the X Window system(日本語版) , 1996 .

[7]  Andreas Simon,et al.  Omnistereo for panoramic virtual environment display systems , 2004, IEEE Virtual Reality 2004.

[8]  Eric J. Seibel,et al.  50.4: Three-dimensional Virtual Retinal Display System using a Deformable Membrane Mirror , 2002 .

[9]  Steven L. Wright IBM 9.2-megapixel flat-panel display: technology and infrastructure , 2002, SPIE Defense + Commercial Sensing.

[10]  S. Suyama,et al.  Three-Dimensional Display System with Dual-Frequency Liquid-Crystal Varifocal Lens , 2000 .

[11]  W. J. North,et al.  Apollo Crew Procedures, Simulation and Flight Planning , 1970 .

[12]  George Mather,et al.  Depth cue integration: stereopsis and image blur , 2000, Vision Research.

[13]  Desney S. Tan,et al.  Women go with the (optical) flow , 2003, CHI '03.

[14]  R. Macfarlane,et al.  A Three-Color, Solid-State, Three-Dimensional Display , 1996, Science.

[15]  Mark Lucente,et al.  Rendering interactive holographic images , 1995, SIGGRAPH.

[16]  W. R. Levick,et al.  Receptive Fields of Retinal Ganglion Cells , 1972 .

[17]  Stephen A. Benton,et al.  Chidi holographic video system , 2000, Electronic Imaging.

[18]  Dr. Jeffrey B. Sampsell An Overview of the Performance Envelope of Digital Micromirror Device TM ( DMD ) Based Projection Display Systems , 2002 .

[19]  F. A. Miles Binocular Vision and Stereopsis by Ian P. Howard and Brian J. Rogers, Oxford University Press, 1995. £90.00 (736 pages) ISBN 0 19 508476 4. , 1996, Trends in Neurosciences.

[20]  Ken Perlin,et al.  An autostereoscopic display , 2000, SIGGRAPH.

[21]  H R BLACKWELL,et al.  Contrast thresholds of the human eye. , 1946, Journal of the Optical Society of America.

[22]  Joshua Napoli,et al.  100-million-voxel volumetric display , 2002, SPIE Defense + Commercial Sensing.

[23]  M. Mon-Williams,et al.  Binocular vision in a virtual world: visual deficits following the wearing of a head‐mounted display , 1993, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[24]  Pat Hanrahan,et al.  Achieving Near-Correct Focus Cues Using Multiple Image Planes , 2004 .

[25]  Nicholas L. Silverman,et al.  58.5L: Late‐News Paper: Engineering a Retinal Scanning Laser Display with Integrated Accommodative Depth Cues , 2003 .

[26]  H. Levitt Transformed up-down methods in psychoacoustics. , 1971, The Journal of the Acoustical Society of America.

[27]  Paul Boeder,et al.  The Co-Operation of Extraocular Muscles , 1961 .

[28]  Myron W. Krueger,et al.  Dynamic focusing in head-mounted displays , 1999, Electronic Imaging.

[29]  Mark Lucente Interactive three-dimensional holographic displays: seeing the future in depth , 1997, COMG.

[30]  Additive and subtractive transparent depth displays , 2003, SPIE Defense + Commercial Sensing.