Supramolecular Immobilization of a Perfluoro‐Tagged Pd‐Catalyst with Dendritic Architectures and Application in Suzuki Reactions

A new supramolecular complex of a perfluoro-tagged palladium phosphine catalyst to a dendritic core-shell architecture with a perfluoroalkyl shell was used as recoverable catalyst for Suzuki couplings. This homogeneous complex can also serve as a model for related catalysts adsorbed on fluorous silica gel.

[1]  W. Bannwarth,et al.  Fluorous-Silica-Supported Perfluoro-Tagged Palladium Complexes Catalyze Suzuki Couplings in Water , 2004 .

[2]  R. Haag,et al.  Syntheses and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures. , 2004, Chemistry.

[3]  G. Koten,et al.  Optically Active Hyperbranched Polyglycerol as Scaffold for Covalent and Noncovalent Immobilization of Platinum(II) NCN-Pincer Complexes. Catalytic Application and Recovery , 2004 .

[4]  R. Haag,et al.  Supramolecular drug-delivery systems based on polymeric core-shell architectures. , 2004, Angewandte Chemie.

[5]  R. Haag Supramolekulare Wirkstoff‐Transportsysteme auf der Basis polymerer Kern‐Schale‐Architekturen , 2004 .

[6]  J. Gladysz,et al.  Fluorous catalysis under homogeneous conditions without fluorous solvents: a "greener" catalyst recycling protocol based upon temperature-dependent solubilities and liquid/solid phase separation. , 2003, Journal of the American Chemical Society.

[7]  D. Cole-Hamilton,et al.  Homogeneous Catalysis--New Approaches to Catalyst Separation, Recovery, and Recycling , 2003, Science.

[8]  W. Bannwarth,et al.  Fluorous biphasic catalysis without perfluorinated solvents: application to Pd-mediated Suzuki and Sonogashira couplings. , 2002, Angewandte Chemie.

[9]  Willi Bannwarth,et al.  Katalyse in fluorigen Zweiphasensystemen ohne perfluorierte Lösungsmittel: Anwendung auf Pd‐vermittelte Suzuki‐ und Sonogashira‐Kupplungen , 2002 .

[10]  R. Haag,et al.  Moderne Trennverfahren zur effizienten Aufarbeitung in der organischen Synthese , 2002 .

[11]  G. Ruggiero,et al.  [(PPh(3))Ag(HCB(11)Me(11))]: a complex with intermolecular Ag.H3C interactions. , 2002, Angewandte Chemie.

[12]  Paul C J Kamer,et al.  Dendrimers as support for recoverable catalysts and reagents. , 2002, Chemical reviews.

[13]  G. van Koten,et al.  A polycationic dendrimer as noncovalent support for anionic organometallic complexes. , 2002, Chemical communications.

[14]  R. Haag,et al.  Dendritic polyglycerol: a new versatile biocompatible-material. , 2002, Journal of biotechnology.

[15]  J. Gladysz,et al.  Fluorous catalysis without fluorous solvents: a friendlier catalyst recovery/recycling protocol based upon thermomorphic properties and liquid/solid phase separation. , 2001, Journal of the American Chemical Society.

[16]  D. Astruc,et al.  Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.

[17]  E. W. Meijer,et al.  Noncovalently functionalized dendrimers as recyclable catalysts. , 2001, Journal of the American Chemical Society.

[18]  Joost N. H. Reek,et al.  Übergangsmetallkatalyse mit funktionalisierten Dendrimeren , 2001 .

[19]  J. Reek,et al.  Transition Metal Catalysis Using Functionalized Dendrimers. , 2001, Angewandte Chemie.

[20]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[21]  S. Schneider,et al.  Wiederholte Verwendung perfluormarkierter Pd‐Komplexe für Stille‐Kupplungen in einem fluorigen Zweiphasensystem , 2000 .

[22]  Siegfried Schneider Dipl.-Chem.,et al.  Repetitive Application of Perfluoro-Tagged Pd Complexes for Stille Couplings in a Fluorous Biphasic System , 2000 .

[23]  H. Frey,et al.  Controlling the growth of polymer trees: concepts and perspectives for hyperbranched polymers. , 2000, Chemistry.

[24]  R. Haag,et al.  An Approach to Glycerol Dendrimers and Pseudo-Dendritic Polyglycerols , 2000 .

[25]  R. Mülhaupt,et al.  Hyperbranched Polyether Polyols: A Modular Approach to Complex Polymer Architectures , 2000 .

[26]  R. Mülhaupt,et al.  Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization , 1999 .

[27]  Dennis P Curran,et al.  Strategy-Level Separations in Organic Synthesis: From Planning to Practice. , 1998, Angewandte Chemie.

[28]  Dennis P. Curran Trennungsstrategien in der organischen Synthese: von der Planung zur Praxis , 1998 .

[29]  A. Cooper,et al.  Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants , 1997, Nature.

[30]  I. Horváth,et al.  Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. , 1994, Science.

[31]  Young Hwan Kim,et al.  Water soluble hyperbranched polyphenylene: "a unimolecular micelle?" , 1990 .

[32]  R. Haag,et al.  Polymeric supports for the immobilisation of catalysts. , 2004, Topics in current chemistry.

[33]  Jean M. J. Fréchet,et al.  Dendrimers and other dendritic polymers , 2001 .

[34]  E. W. Meijer,et al.  Host-Guest Chemistry of Dendritic Molecules , 2000 .