The Cost-free Nature of Optimally Tuning Tikhonov Regularizers and Other Ordered Smoothers
暂无分享,去创建一个
[1] Pierre C Bellec,et al. Concentration of quadratic forms under a Bernstein moment assumption , 2019, 1901.08736.
[2] Yu. Golubev,et al. Ordered smoothers with exponential weighting , 2012, 1211.4207.
[3] Gene H. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[4] Sham M. Kakade,et al. A tail inequality for quadratic forms of subgaussian random vectors , 2011, ArXiv.
[5] P. Hall,et al. Asymptotically optimal difference-based estimation of variance in nonparametric regression , 1990 .
[6] A. Tsybakov,et al. Linear and convex aggregation of density estimators , 2006, math/0605292.
[7] Yu. Golubev. On universal oracle inequalities related to high-dimensional linear models , 2010, 1011.2378.
[8] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[9] Roman Vershynin,et al. High-Dimensional Probability , 2018 .
[10] Stephen A. Vavasis,et al. Complexity Theory: Quadratic Programming , 2009, Encyclopedia of Optimization.
[11] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[12] A. Tsybakov. Aggregation and minimax optimality in high-dimensional estimation , 2014 .
[13] C. Mallows. More comments on C p , 1995 .
[14] Lawrence D. Brown,et al. Variance estimation in nonparametric regression via the difference sequence method , 2007, 0712.0898.
[15] A. Belloni,et al. Pivotal estimation via square-root Lasso in nonparametric regression , 2011, 1105.1475.
[16] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[17] Philippe Rigollet,et al. Kullback-Leibler aggregation and misspecified generalized linear models , 2009, 0911.2919.
[18] Sylvain Arlot,et al. Minimal penalties and the slope heuristics: a survey , 2019, 1901.07277.
[19] Isaac Z. Pesenson,et al. Average sampling and average splines on combinatorial graphs , 2019, 2019 13th International conference on Sampling Theory and Applications (SampTA).
[20] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[21] Nicolai Bissantz,et al. On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional , 2005 .
[22] Remarks on Kneip's linear smoothers , 2014, 1405.1744.
[23] Sylvain Arlot,et al. A survey of cross-validation procedures for model selection , 2009, 0907.4728.
[24] R. Handel. Probability in High Dimension , 2014 .
[25] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[26] Cun-Hui Zhang,et al. Scaled sparse linear regression , 2011, 1104.4595.
[27] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[28] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[29] A. Owen. A robust hybrid of lasso and ridge regression , 2006 .
[30] Tong Zhang,et al. Aggregation of Affine Estimators , 2013, ArXiv.
[31] A. Kneip. Ordered Linear Smoothers , 1994 .
[32] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[33] Sjoerd Dirksen,et al. Tail bounds via generic chaining , 2013, ArXiv.
[34] O. Papaspiliopoulos. High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .
[35] Holger Dette,et al. Estimating the variance in nonparametric regression—what is a reasonable choice? , 1998 .
[36] M. Rudelson,et al. Hanson-Wright inequality and sub-gaussian concentration , 2013 .
[37] Arthur Cohen,et al. All Admissible Linear Estimates of the Mean Vector , 1966 .
[38] A. Dalalyan,et al. Sharp Oracle Inequalities for Aggregation of Affine Estimators , 2011, 1104.3969.
[39] C. L. Mallows. Some comments on C_p , 1973 .
[40] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[41] R. Adamczak,et al. A note on the Hanson-Wright inequality for random vectors with dependencies , 2014, 1409.8457.
[42] Ker-Chau Li,et al. Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing , 1986 .
[43] Tong Zhang,et al. Deviation Optimal Learning using Greedy Q-aggregation , 2012, ArXiv.
[44] Francis R. Bach,et al. Data-driven calibration of linear estimators with minimal penalties , 2009, NIPS.