Oxygen plasma-treated graphite sheet electrodes: a sensitive and disposable sensor for methamphetamines

[1]  A. O. Maldaner,et al.  An overview of New Psychoactive Substances (NPS) in northeast Brazil: NMR-based identification and analysis of ecstasy tablets by GC-MS. , 2023, Forensic Science International.

[2]  L. D. de Faria,et al.  Cyclic square-wave voltammetric discrimination of the amphetamine-type stimulants MDA and MDMA in real-world forensic samples by 3D-printed carbon electrodes , 2022, Electrochimica Acta.

[3]  Marc Parrilla,et al.  Towards Developing a Screening Strategy for Ecstasy: Revealing the Electrochemical Profile , 2021, ChemElectroChem.

[4]  P. R. Oliveira,et al.  On the physical and electrochemical properties of MLG-based electrode surfaces modified by microwave-assisted reactive plasma , 2021 .

[5]  R. Verly,et al.  Rapid and simple voltammetric screening method for Lysergic Acid Diethylamide (LSD) detection in seized samples using a boron-doped diamond electrode , 2021 .

[6]  Diego P. Rocha,et al.  Reactive oxygen plasma treatment of 3D-printed carbon electrodes towards high-performance electrochemical sensors , 2021 .

[7]  M. Huestis,et al.  Prevalence of new psychoactive substances (NPS) in Brazil based on oral fluid analysis of samples collected at electronic music festivals and parties. , 2021, Drug and alcohol dependence.

[8]  Diego P. Rocha,et al.  Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture , 2021 .

[9]  R. Rocha,et al.  Simple and rapid electrochemical detection of 1-benzylpiperazine on carbon screen-printed electrode , 2021 .

[10]  F. Liang,et al.  Highly sensitive electrochemical sensor based on Pt nanoparticles/carbon nanohorns for simultaneous determination of morphine and MDMA in biological samples , 2021, Electrochimica Acta.

[11]  K. D. Oliveira,et al.  Quantification of amphetamine and derivatives in oral fluid by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. , 2021, Journal of pharmaceutical and biomedical analysis.

[12]  B. McCord,et al.  MDMA Electrochemical Determination and Behavior at Carbon Screen‐printed Electrodes: Cheap Tools for Forensic Applications , 2020 .

[13]  Pablo A. Marinho,et al.  Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: A fast, simple and sensitive screening method for forensic samples , 2020 .

[14]  Pablo A. Marinho,et al.  Electrochemical detection of 3,4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: Simple and fast screening method for application in forensic analysis , 2020 .

[15]  Bruce McCord,et al.  Voltammetric detection of 3,4-methylenedioxymethamphetamine (mdma) in saliva in low cost systems , 2020 .

[16]  M. Huestis,et al.  Screening of 104 New Psychoactive Substances (NPS) and Other Drugs of Abuse in Oral Fluid by LC-MS-MS. , 2020, Journal of analytical toxicology.

[17]  Juliana Midori Toia Katayama,et al.  MDMA electrochemical determination in aqueous media containing illicit drugs and validation of a voltammetric methodology , 2020 .

[18]  B. K. Gupta,et al.  Probing number of layers and quality assessment of mechanically exfoliated graphene via Raman fingerprint , 2020 .

[19]  E. Richter,et al.  Graphite sheet as a novel material for the collection and electrochemical sensing of explosive residues. , 2019, Talanta.

[20]  R. V. Gelamo,et al.  Improved electrochemical performance of pyrolytic graphite paper: Electrochemical versus reactive cold-plasma activation , 2019, Electrochemistry Communications.

[21]  E. Fernandes,et al.  Electrochemical sensing of ecstasy with electropolymerized molecularly imprinted poly(o-phenylenediamine) polymer on the surface of disposable screen-printed carbon electrodes , 2019, Sensors and Actuators B: Chemical.

[22]  E. Nossol,et al.  Evaluation of graphite sheets for production of high-quality disposable sensors , 2019, Journal of Electroanalytical Chemistry.

[23]  E. Nossol,et al.  3D printing for electroanalysis: From multiuse electrochemical cells to sensors. , 2018, Analytica chimica acta.

[24]  William L. Jorgensen,et al.  LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands , 2017, Nucleic Acids Res..

[25]  G. Lacconi,et al.  Spectroelectrochemical analysis of HOPG surface controlled modification , 2017 .

[26]  William L. Jorgensen,et al.  1.14*CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. , 2017, The journal of physical chemistry. B.

[27]  H. Morgan,et al.  The electrochemical 4-chlorophenol sensing properties of a plasma-treated multilayer graphene modified photolithography patterned platinum electrode , 2016 .

[28]  Xianwen Kan,et al.  Disposable graphite paper based sensor for sensitive simultaneous determination of hydroquinone and catechol , 2016 .

[29]  S. Si,et al.  A disposable expanded graphite paper electrode with self-doped sulfonated polyaniline/antimony for stripping voltammetric determination of trace Cd and Pb , 2016 .

[30]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[31]  R. Resende,et al.  The Variability of Ecstasy Tablets Composition in Brazil , 2015, Journal of forensic sciences.

[32]  Weihua Cai,et al.  Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor , 2014 .

[33]  G. Demets,et al.  Developing electrodes chemically modified with cucurbit(6)uril to detect 3,4-methylenedioxymethamphetamine (MDMA) by voltammetry , 2014 .

[34]  P. Lacovig,et al.  Atomic Oxygen on Graphite: Chemical Characterization and Thermal Reduction , 2012 .

[35]  Lewis S. Nelson,et al.  The Toxicology of Bath Salts: A Review of Synthetic Cathinones , 2012, Journal of Medical Toxicology.

[36]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[37]  Lu Yue,et al.  Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery , 2010 .

[38]  A. Oliveira‐Brett,et al.  Electrochemical oxidation of amphetamine-like drugs and application to electroanalysis of ecstasy in human serum. , 2010, Bioelectrochemistry.

[39]  R. Muñoz,et al.  Disposable Graphite Foil Based Electrodes and Their Application in Pharmaceutical Analysis , 2010 .

[40]  E. Birgin,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[41]  M. Tomita,et al.  Sensitive determination of MDMA and its metabolite MDA in rat blood and brain microdialysates by HPLC with fluorescence detection. , 2007, Biomedical chromatography : BMC.

[42]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[43]  Ado Jorio,et al.  General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy , 2006 .

[44]  B. O’Neill,et al.  Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“Ecstasy”) and MDA (“Love”) , 2006, Neuropharmacology.

[45]  M. Concheiro,et al.  Determination of MDMA, MDA, MDEA and MBDB in oral fluid using high performance liquid chromatography with native fluorescence detection. , 2005, Forensic science international.

[46]  Roland F Staack,et al.  Chemistry, Pharmacology, Toxicology, and Hepatic Metabolism of Designer Drugs of the Amphetamine (Ecstasy), Piperazine, and Pyrrolidinophenone Types: A Synopsis , 2004, Therapeutic drug monitoring.

[47]  M. Colado,et al.  The Pharmacology and Clinical Pharmacology of 3,4-Methylenedioxymethamphetamine (MDMA, “Ecstasy”) , 2003, Pharmacological Reviews.

[48]  R. de la Torre,et al.  Usefulness of sweat testing for the detection of MDMA after a single-dose administration. , 2003, Journal of analytical toxicology.

[49]  D. de Waard,et al.  Plasma, oral fluid and sweat wipe ecstasy concentrations in controlled and real life conditions. , 2002, Forensic science international.

[50]  M. Morgan,et al.  Ecstasy (MDMA): a review of its possible persistent psychological effects , 2000, Psychopharmacology.

[51]  G. Scollary,et al.  A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques (Technical Report) , 1997 .

[52]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[53]  Lúcio Angnes,et al.  Miniaturized reference electrodes with microporous polymer junctions , 1996 .

[54]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[55]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[56]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[57]  J. Downing The psychological and physiological effects of MDMA on normal volunteers. , 1986, Journal of psychoactive drugs.

[58]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[59]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[60]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[61]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[62]  M. Takeda,et al.  Development of PolyParGen Software to Facilitate the Determination of Molecular Dynamics Simulation Parameters for Polymers , 2019, Journal of Computer Chemistry, Japan -International Edition.

[63]  Craig E. Banks,et al.  hemistry : simultaneous voltammetric detection of MDMA and its fatal counterpart “ Dr Death ” ( PMA ) † , 2015 .

[64]  Ž. D. Mijin,et al.  The use of a gold electrode for the determination of amphetamine derivatives and application to their analysis in human urine , 2013 .

[65]  Rachel Bulcão,et al.  Designer drugs: aspectos analíticos e biológicos , 2012 .

[66]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[67]  E. Borguet,et al.  Enhancement of adsorption on graphite (HOPG) by modification of surface chemical functionality and morphology , 2002 .