Parameterization of the Autoconversion Process. Part I: Analytical Formulation of the Kessler-Type Parameterizations

Abstract Various commonly used Kessler-type parameterizations of the autoconversion of cloud droplets to embryonic raindrops are theoretically derived from the same formalism by applying the generalized mean value theorem for integrals to the general collection equation. The new formalism clearly reveals the approximations and assumptions that are implicitly embedded in these different parameterizations. A new Kessler-type parameterization is further derived by eliminating the incorrect and/or unnecessary assumptions inherent in the existing Kessler-type parameterizations. The new parameterization exhibits a different dependence on liquid water content and droplet concentration, and provides theoretical explanations for the multitude of values assigned to the tunable coefficients associated with the commonly used parameterizations. Relative dispersion of the cloud droplet size distribution (defined as the ratio of the standard deviation to the mean radius of the cloud droplet size distribution) is explici...

[1]  E. Berry,et al.  Cloud Droplet Growth by Collection , 1967 .

[2]  P. Daum,et al.  An analytical expression for predicting the critical radius in the autoconversion parameterization , 2004 .

[3]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part I. Double Distributions , 1974 .

[4]  W. Cotton Numerical Simulation of Precipitation Development in Supercooled Cumuli—Part II , 1972 .

[5]  P. Daum,et al.  Anthropogenic aerosols: Indirect warming effect from dispersion forcing , 2002, Nature.

[6]  A. B. Long Solutions to the Droplet Collection Equation for Polynomial Kernels , 1974 .

[7]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[8]  R. Shaw PARTICLE-TURBULENCE INTERACTIONS IN ATMOSPHERIC CLOUDS , 2003 .

[9]  William R. COTTON-Experimental Numerical Simulation of Precipitation Development in Supercooled Cumuli-Part I , 1972 .

[10]  K. D. Beheng,et al.  A general formulation of collection rates of cloud and raindrops using the kinetic equation and comparison with parameterizations , 1986 .

[11]  J. W. Telford Clouds with turbulence; the role of entrainment , 1996 .

[12]  H. D. Orville,et al.  Numerical Modeling of Precipitation and Cloud Shadow Effects on Mountain-Induced Cumuli , 1969 .

[13]  S. Klein,et al.  Unresolved spatial variability and microphysical process rates in large‐scale models , 2000 .

[14]  P. Daum,et al.  A Generalized Systems Theory for the Effect of Varying Fluctuations on Cloud Droplet Size Distributions , 2002 .

[15]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[16]  B. Stevens,et al.  Simulations of marine stratocumulus using a new microphysical parameterization scheme , 1998 .

[17]  P. Daum,et al.  Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius , 2000 .

[18]  Robert Wood Parametrization of the effect of drizzle upon the droplet effective radius in stratocumulus clouds , 2000 .

[19]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[20]  Kevin W. Manning,et al.  Freezing Drizzle Formation in Stably Stratified Layer Clouds: The Role of Radiative Cooling of Cloud Droplets, Cloud Condensation Nuclei, and Ice Initiation , 2002 .

[21]  K. D. Beheng A parameterization of warm cloud microphysical conversion processes , 1994 .

[22]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions , 1974 .

[23]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[24]  Bing Lin,et al.  A new statistically based autoconversion rate parameterization for use in large-scale models , 2002 .

[25]  William R. Cotton,et al.  A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida , 1980 .

[26]  H. D. Orville,et al.  Numerical Simulation of the Life History of a Hailstorm , 1970 .

[27]  W. Cotton,et al.  Autoconversion rate bias in stratiform boundary layer cloud parameterizations , 2002 .

[28]  Leon D. Rotstayn,et al.  Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration , 2003 .

[29]  Variability in concentrations of cloud condensation nuclei in the marine cloud–topped boundary layer , 1993 .

[30]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[31]  W. Cotton,et al.  The Physics of the Marine Stratocumulus-Capped Mixed Layer. , 1987 .

[32]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[33]  K. Liou,et al.  The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective , 1989 .

[34]  Robert Pincus,et al.  Precipitation in Stratocumulus Clouds: Observational and Modeling Results. , 1995 .

[35]  Some impact of pollutants on the development and optical properties of stratocumulus clouds , 2000 .

[36]  H. Treut,et al.  Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical processes , 1995 .

[37]  Leon D. Rotstayn,et al.  On the “tuning” of autoconversion parameterizations in climate models , 2000 .

[38]  U. Lohmann,et al.  Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect , 2003 .